Ultraviolet micro-LEDs show great potential as a light source for maskless photolithography. However, there are few reports on micro-LED based maskless photolithography systems, and the studies on the effects of system parameters on exposure patterns are still lacking. Hence, we developed a maskless photolithography system that employs micro-LEDs with peak wavelength 375 nm to produce micrometer-sized exposure patterns in photoresists.
View Article and Find Full Text PDFTo prepare Goserelin (GOS) loaded long-acting microspheres with reduced initial release and prolonged drug release time of GOS, GOS/PLGA solid dispersion (by hot-melt extrusion, HME) was dissolved/dispersed in dichloromethane (DCM) to prepare microspheres by O/W method. From results of molecular dynamics simulation, PLGA and GOS molecules completely and uniformly dissolved and dispersed in DCM, respectively. In F5 microspheres (prepared by HME-O/W method), GOS existed as molecular or amorphous state, but not aggregation.
View Article and Find Full Text PDFA bioadhesive nanocarrier, PTNP, was constructed by utilizing a novel poly(methyl vinyl ether-co-maleic anhydride)- D-α-Tocopheryl polyethylene glycol succinate (PVMMA-TPGS) copolymer in the PLGA/lipid hybrid nanoparticles (PLGA NPs) for improving oral delivery of cabazitaxel (CTX). The PVMMA-TPGS was synthesized by the ring-opening polymerization of the anhydride groups with the hydroxyl groups, combining the bioadhesive property of PVMMA with P-glycoprotein (P-gp) inhibitory effect of TPGS. The CTX-loaded PTNPs (CTX-PTNPs) were prepared by an emulsification-solvent evaporation method and performed a spherical appearance with a uniform particle size of 192.
View Article and Find Full Text PDFOral delivery of exenatide (EXE), a high-efficiency therapeutic peptide, is urgently needed for long-term treatment of diabetes. In this study, a polylactide-co-glycoside (PLGA) nanoparticles (NPs) in yeast cell wall particle (YCWP) system was built to improve the intestinal absorption of EXE by efficient protection of EXE against gastrointestinal degradation and intestinal phagocytic cell targeted delivery. The EXE-loaded PLGA NPs were prepared by a double emulsion solvent diffusion method and exhibited a uniformly spherical appearance, a nano size (92.
View Article and Find Full Text PDFCurcumin (CUR), a polyphenol derived from turmeric, exhibits anticancer and anti-inflammatory properties. However, it has poor water solubility, stability, and oral bioavailability. To overcome these limitations, lipid-polyester mixed nanoparticles (NPs) embedded in enteric polymer-EudragitL100-55(Eu) were formulated (CUR-NPs-Eu).
View Article and Find Full Text PDFPoor permeation across intestinal mucous barriers often limits the oral delivery of prospective therapeutic proteins and peptides (TPPs). In order to address this issue, cell penetrating peptide (CPP) together with PEG modified and pore-enlarged mesostructured silica nanoparticle (NP) were constructed to form the mucus-penetrating electrostatic particle-complexes, CPP/TPP/NP. Alone, CPP and TPP often present with poor stability, and their traditional electrostatic complex shows reduced pharmacodynamics.
View Article and Find Full Text PDFThe aim of this work was to design a novel ocular delivery carrier based on liposomes loaded with azithromycin (AZM) for the treatment of dry eye (DE) disease. To improve the drug loading efficiency, an AZM-cholesteryl hemisuccinate (CHEMS) ion pair (ACIP) was first prepared, and the successful formation of the ACIP was characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray powder diffraction (XRD), which demonstrated a stable interaction between CHEMS and AZM. The ACIP-loaded liposome (ACIP-Lip) appeared as spherical particles under TEM, with a uniform particle size of 60 ± 2 nm and zeta potential of -20.
View Article and Find Full Text PDFA ternary core/shell based nanoparticulate complex was designed for the sequential and site-specific drug delivery. First, bovine serum albumin nanoparticles (BSA NPs) were served as the core for loading gambogic acid (GA). Subsequently, the BSA NPs were adsorbed by polyethylenimine and then shielded with carboxymethyl chitosan-folate (CMCS-FA) as the outer shell for encapsulating tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), forming the GA/TRAIL co-delivery BSA (GTB) NPs.
View Article and Find Full Text PDFIn this work, a nano-in-micro carrier was constructed by loading polymer-lipid hybrid nanoparticles (NPs) into porous and hollow yeast cell wall microparticles (YPs) for macrophage-targeted oral delivery of cabazitaxel (CTX). The YPs, primarily composed of natural β-1,3-d-glucan, can be recognized by the apical membrane receptor, dectin-1, which has a high expression on macrophages and intestinal M cells. By combining electrostatic force-driven self-deposition with solvent hydration/lyophilization methods, the positively charged NPs loaded with CTX or fluorescence probes were efficiently packaged into YPs, as verified by scanning electron microscope (SEM), atomic force mircoscope (AFM), and confocal laser scanning microscopy (CLSM) images.
View Article and Find Full Text PDFCombination therapy with different functional chemotherapeutic agents based on nano-drug delivery systems is an effective strategy for the treatment of breast cancer. However, co-delivery of drug molecules with different physicochemical properties still remains a challenge. In this study, an amphiphilic poly (ε-caprolactone)-b-poly (l-glutamic acid)-g-methoxy poly (ethylene glycol) (PCL-b-PGlu-g-mPEG) copolymer was designed and synthesized to develop a nanocarrier for the co-delivery of hydrophilic doxorubicin (DOX) and hydrophobic disulfiram (DSF).
View Article and Find Full Text PDFPolymer-lipid hybrid nanoparticles, PMONPs, were developed to improve the oral absorption of cabazitaxel (CTX), a semi-synthetic taxane derivative, by overcoming multiple gastrointestinal barriers. The nano-carrier is comprised of a poly(ε-caprolactone) (PCL) and chain triglyceride (MCT) hybrid core for drug loading, and a positively charged surface while slightly concealed with a polyethylene oxide (PEO) shell by insertion of poloxamer 188, with the aim of improving the intestinal mucus permeation and epithelial cell uptake. The CTX-loaded PMONPs (CTX-PMONPs) were optimized with 10% MCT content in the core, and characterization showed they were on the nanoscale with a size of 170.
View Article and Find Full Text PDFBioadhesive nanoparticles based on poly(vinyl methyl ether/maleic anhydride) (PVMMA) and poly(ethylene glycol) methyl ether-b-poly(d,l-lactic acid) (mPEG-b-PLA) were produced by the emulsification solvent evaporation method. Paclitaxel was utilized as the model drug, with an encapsulation efficiency of up to 90.2 ± 4.
View Article and Find Full Text PDFPLGA-PEG-PLGA (PPP) triblock copolymer is the most widely studied thermosensitive hydrogel owing to its non-toxic, biocompatible, biodegradable, and thermosensitive properties. PPP thermosensitive hydrogels are being investigated as in situ gels because, at a low temperature, PPP solutions with drugs can be injected at the target site, and converted into a gel without surgical procedures. To meet the requirements of different therapeutic applications, PPP hydrogels with different properties need to be synthesized.
View Article and Find Full Text PDFJ Control Release
September 2017
In the past few years, substantial efforts have been made in the design and preparation of polymeric micelles as novel drug delivery vehicles. Typically, polymeric micelles possess a spherical core-shell structure, with a hydrophobic core and a hydrophilic shell. Consequently, poorly water-soluble drugs can be effectively solubilized within the hydrophobic core, which can significantly boost their drug loading in aqueous media.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2016
Pluronic F127 and PEG as a multi-gel-core were used to prepare Exenatide-loaded microspheres and store the drug within the microspheres. Also, the sol-gel transition and novel functions of the Pluronic F127-PEG gel core were investigated.Microspheres with a multi-gel-core (GCMs) and without a multi-gel-core (Ms) were compared in terms of the rate of PLGA degradation, therelease kinetics in vitro and the efficacy in KKAy mice.
View Article and Find Full Text PDFExpert Opin Drug Deliv
October 2016
Objectives: The aim of this study was to ascertain the potential toxicity of perilla seed oil-based lipid emulsion (POLE) caused by phytosterols and confirm the efficacy of the technique for removing phytosterols from perilla seed oil, and evaluate the safety of a low phytosterol POLE in a long-term tolerance study in dogs.
Methods: A comparison between a soybean oil lipid emulsion (Intralipid group A) and POLE with high (group B) versus low (group C) levels of phytosterols was made with regard to their effects on the general condition, hematological and biochemical parameters, urinalysis and histopathological changes in nine dogs receiving daily infusions for four weeks at dosage levels of 6, 6, 9 g fat /kg.
Results: Dogs in group A and group C remained in good condition and gained weight during the infusion period and no diarrhea or gastrointestinal bleeding occurred.
The purpose of this study was to develop an alternative submicron emulsion containing three bufadienolides for oral administration and evaluate its preclinical stability, efficacy, and toxicity. The bufadienolide-loaded oral submicron emulsion (BU-OE) was prepared by high-pressure homogenization. The storage stability, in vitro cytotoxicity, in vivo antitumor efficacy, acute toxicity, and long-term toxicity of BU-OE were investigated in detail to evaluate the formulation.
View Article and Find Full Text PDFThe purpose of this study was to prepare norcantharidin (NCTD)-loaded lipid microspheres (LMs) with a high encapsulation efficiency (EE) and stability during sterilization. The NCTD-phospholipid complex (NPC) was produced and characterized to increase the lipophilic properties of NCTD and a novel concentrated homogenization method was applied for the preparation of LMs. The results of the UV, DSC and IR investigations confirmed the formation of NPC.
View Article and Find Full Text PDFWith the purpose to carry out the pharmacokinetic studies of 10-hydroxy camptothecin (10-HCPT) and hydroxyethyl starch (10-HCPT-HES) conjugate, an ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method has been developed and validated. The analytes, 10-HCPT and the internal standard, Diphenhydramine hydrochloride were extracted with ethyl acetate-isopropanol (95:5, v/v) and separated on an ACQUITY UPLC™ BEH C18 column using a mobile phase composed of acetonitrile and water (containing 0.1% formic acid) with a linear gradient program.
View Article and Find Full Text PDFExpert Opin Drug Deliv
November 2013
Introduction: A parenteral lipid emulsion (LE), used as a key source of energy, essential fatty acids (FAs), and fat-soluble vitamins, is an integral part of a parenteral nutrition (PN) regimen. The conventional LEs, such as soybean oil (SO)-based emulsions, have caused concerns about the potential adverse effects involving oxidative stress, inflammation, and immune response probably because of undesirable FA composition.
Areas Covered: Recently, alternative LEs, optimizing the FA composition with partial substitution of SO with medium-chain triglyceride (MCT), olive oil (OO), and fish oil (FO), have been developed and applied in clinical practice.
The therapeutic efficiency of mangiferin is restricted by its low intestinal permeability. In order to improve the oral absorption of mangiferin, potential of enhancers, including TPGS, sodium deoxycholate and Carbopol 974P, were investigated in a series of in vivo experiments. After administration of mangiferin at a dose of 30 mg/kg combining with sodium deoxycholate, the bioavailability of mangiferin increased four-fold, and this may be due to sodium deoxycholate weakening the compactness between lecithin molecules and increased the paracellular permeability.
View Article and Find Full Text PDF