Publications by authors named "Tianyan You"

Manganese dioxide nanosheets (MnO NSs) have garnered significant attention in analytical sensing, while the majority of the previous reports suffer from a complex preparation process involving reducing agents, template or high-temperature. In this work, a novel MnO NSs decorated TiCT MXene nanoribbons (TiCTNR@MnO) composite was firstly assemblied via a facile one-step strategy and applied as a bi-signal generator to enable colorimetric and fluorescence (FL) dual-response sensing. During the assembly process, TiCTNR innovatively acted as both reductant and carrier to prevent the aggregation of MnO NSs.

View Article and Find Full Text PDF
Article Synopsis
  • Natural enzymes are effective but have limitations like poor stability and high costs; nanozymes, particularly iron-based ones, offer a better alternative with improved catalytic properties.
  • Iron-based nanozymes can be categorized by their catalytic activities (like peroxidase and oxidase) and show promise for detecting agricultural pollutants using a simple and fast colorimetric method.
  • The review discusses the structure and functionality of these nanozymes, their applications in detecting various contaminants, and suggests future research directions in sensing technology.
View Article and Find Full Text PDF

Mycotoxin contamination poses serious threats to human and animal health. Food and environmental systems are often simultaneously contaminated with multiple mycotoxins, a problem that is further exacerbated by the synergistic toxicological effects of these co-occurring mycotoxins. Consequently, the development of rapid detection methods capable of simultaneously identifying multiple mycotoxins in agricultural products is essential to prevent their entry into the food chain.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on enhancing optical biosensors by controlling the movement of carriers at the interface of different materials in a heterojunction setup using a DNA-based system.
  • A new dual-modal biosensor design combines photoelectrochemical (PEC) and colorimetric methods, utilizing a modified zeolitic imidazolate framework (ZIF) to improve performance significantly.
  • The biosensor shows high selectivity and sensitivity, with very low detection limits, demonstrating a promising approach for advanced biosensing applications.
View Article and Find Full Text PDF

The bimetallic nanoparticles have received significant attention in the field of colorimetric sensing, while the majority of the previous methods for synthesizing such nanoparticles typically require the use of reducers and involve highly harsh synthesis conditions. In this work, the AuPt bimetallic nanoparticles (AuPtNPs) decorated TiCTNR nanohybrid (TiCTNR@AuPt) was firstly synthesized in a "two birds with one stone" manner. Innovatively, during the synthesis process, TiCTNR served as both reducing agent and supporting agent to prevent aggregation of bimetallic nanoparticles.

View Article and Find Full Text PDF

The electrochemical detection of biosensors is largely governed by the changes in physical properties of redox probes, which are susceptible to electrode substrate effects, inhibiting sensor sensitivity. In this work, a light-driven electrochemical biosensor based on a hybrid nanoantenna was developed for the sensitive detection of fumonisin B1 (FB1). The hybrid nanoantenna sensing interface was constructed by coupling CdSe quantum dots (QDs)-DNA nanowire and graphdiyne oxide composites loaded with methylene blue and gold nanorods (GDYO-MB-Au NRs) using a tetrahedral DNA nanostructure, which acted as a light-driven unit and an amplification unit, respectively.

View Article and Find Full Text PDF

Molecularly imprinted polymers (MIP) have been widely owing to their specificity, however, their singular structure imposes limitations on their performance. Current enhancement methods, such as doping with inorganic nanomaterials or introducing various functional monomers, are limited and single, indicating that MIP performances require further advancement. In this work, a dual-modification approach that integrates both conductive inorganic nanomaterials and diverse bifunctional monomers was proposed to develop a multifunctional MIP-based electrochemical (MMIP-EC) sensor for diuron (DU) detection.

View Article and Find Full Text PDF

Hg contamination poses a serious threat to the environment and human health. Although gold nanoclusters (Au NCs) have been utilized as fluorescence probes or colorimetric nanozymes for performing Hg assays by using a single method, designing multifunctional nanoclusters as fluorescent nanozyme remains challenging. Herein, Ce-aggregated gold nanoclusters (Ce-Au NCs) were reported with "three in one" functions to generate strong fluorescence, excellent peroxidase-like activity, and the highly specific recognition of Hg via its metallophilic interaction.

View Article and Find Full Text PDF

Multimodal flexible sensors, consisting of multiple sensing units, can sense and recognize different external stimuli by outputting different types of response signals. However, the recovery and recycling of multimodal sensors are impeded by complex structures and the use of multiple materials. Here, a bimodal flexible sensor that can sense strain by resistance change and temperature by voltage change was constructed using poly(vinyl alcohol) hydrogel as a matrix and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) as a sensing material due to its conductivity and thermoelectric effect.

View Article and Find Full Text PDF

Comprehending the charge transfer mechanism at the semiconductor interfaces is crucial for enhancing the electronic and optical performance of sensing devices. Yet, relying solely on single signal acquisition methods at the interface hinders a comprehensive understanding of the charge transfer under optical excitation. Herein, we present an integrated photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) platform based on quantum dots/metal-organic framework (CdTe/Yb-TCPP) nanocomposites for investigating the charge transfer mechanism under photoexcitation in multiple dimensions.

View Article and Find Full Text PDF

Green electromagnetic interference (EMI) shielding materials not only require high shielding effectiveness (SE) and low reflection but also need to be recyclable after damage; however, it is challenging to strike a balance in practice. Here, a polyacrylamide (PAM) composite composed of numerous chemically cross-linked PAM@carbon nanotube (cPAM@CNT) core-shell particles featuring rich wrinkled microstructures was prepared using an adsorption-drying-shrinking strategy. The wrinkled microstructures enable the incident electromagnetic waves (EMWs) to undergo attenuation within the composites, achieving an average EMI SE of 67.

View Article and Find Full Text PDF

Ligand-protected gold nanoclusters (AuNCs) have become promising nanomaterials in fluorescence (FL) methods for mercury ions (Hg) monitoring, but low FL efficiency hinders their widespread application. Herein, AuNCs/cerium-based metal-organic frameworks (AuNCs/Ce-MOFs) were prepared by loading 6-aza-2-thiothymine-protected AuNCs (ATT-AuNCs) with aggregation-induced emission (AIE) effect on the surface of Ce-MOFs by electrostatic attraction. This strategy improved the FL intensity of AuNCs through two aspects: (i) the AIE effect of ATT-AuNCs and (ii) the confinement effect of Ce-MOFs, which improved the restriction of intramolecular motion (RIM) of ATT-AuNCs.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) and zearalenone (ZEN) are two mycotoxins that often co-occur in corn. A surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) that can simultaneously detect AFB1 and ZEN in corn samples was developed employing the core-interlayer-satellite magnetic nanocomposites (FeO@PEI/Au@Ag) as dual-functional SERS tags. Under the optimal conditions, the detection ranges of AFB1 and ZEN in corn samples were 0.

View Article and Find Full Text PDF

Using activated-carbon-based electrodes derived from waste biomass in super-capacitor energy technologies is an essential future strategy to achieve sustainable energy and environmental protection. Biomass feed-stocks such as bamboo and straw have been used to prepare activated carbon-based electrodes. This experiment used peanut shells (waste biomass) as carbon precursors.

View Article and Find Full Text PDF

Bis(2-ethylhexyl)phthalate (DEHP), an endocrine disruptor, shows carcinogenic, teratogenic, mutagenic and estrogenic effects. It is easy to release from plastic materials and migrate to soil environment, causing serious pollution and posing a great threat to human health. In our work, a photoelectrochemical (PEC) sensing platform for DEHP detection was constructed using BiOI/ZnO nanoarrays (NRs) as the transducer species and the DEHP aptamers as the biological recognition elements.

View Article and Find Full Text PDF

Background: Tetracycline (TC), a cost-effective broad-spectrum antibacterial drug, has been excessively utilized in the livestock and poultry industry, leading to a serious overabundance of TC in livestock wastewater. However, conventional analytical methods such as liquid chromatography and gas chromatography face challenges in achieving sensitive detection of trace amounts of TC in complex substrates. Therefore, it is imperative to develop a highly sensitive and anti-interference analytical method for the detection of tetracycline in livestock wastewater.

View Article and Find Full Text PDF

The Janus interface, comprising multiple functional heterointerfaces with contrasting functionalities within a single interface, has recently garnered widespread research interest. Herein, a Janus biosensing interface is obtained via wavelength-resolved laser illumination. Deoxyribonucleic acid bridges the electrochemical probe of methylene blue (MB) and plasmonic gold nanoparticles (AuNPs), achieving a sensitive detection performance.

View Article and Find Full Text PDF

Microcystin LR (MC-LR) is a hazardous cyanotoxin produced by cyanobacteria during freshwater eutrophication, which can cause liver cancer. Here, a photoelectrochemical (PEC) aptasensor based on methylene blue (MB)-loaded Ni-MOF composite (Ni-MOF/MB) with spatial confinement was constructed for the sensitive detection of MC-LR. Ni-MOF with two-dimensional sheet structure was prepared via a liquid-liquid interface synthesis method with environmental-friendly solvent and milder reaction conditions.

View Article and Find Full Text PDF

Bifunctional materials have attracted ongoing interest in the field of detection and removal of contaminants because of their integration of two functions, but they exhibit commonly exceptional performance in only one of these two aspects. The interaction between the two functional units of the bifunctional materials may compromise their sensing and adsorption abilities. Guided by the concept of domain building blocks (DBBs), a hierarchical metal-organic framework (MOF)-on-MOF hybrid was designed by growing gold nanoclusters (AuNCs)-embedded zeolitic imidazolate framework 8 (AuNCs/ZIF-8) on the surface of Zr-MOF (UiO-66-NH) for the simultaneous detection and removal of Hg.

View Article and Find Full Text PDF

It is of great significance to develop an effective method for methyl parathion (MP) detection. Herein, a novel nitrogen-doped titanium carbide quantum dots (N-Ti C QDs) was prepared and used to construct a simple and sensitive fluorescence sensing platform of MP by making use of inner filter effect (IFE). The prepared N-Ti C QDs can exhibit strong blue fluorescence at 434 nm.

View Article and Find Full Text PDF

Background: As one of the most potent environmental estrogens, 17β-estradiol (E2), which can be enriched into organisms through the food chain and cause harmful biological effects in humans, has been frequently detected in the water environment of the world. High performance liquid chromatography (HPLC) and gas chromatograohy-mass spectrometry (GC/MS) have been widely used for quantification of E2. Despite excellent accuracy, tedious pretreatment and expensive instruments result in their limited application.

View Article and Find Full Text PDF

Here, we develop an all-in-one strategy for efficient assembly of an electrochemical aptasensor. A multifunctional structure based on a tetrahedral DNA nanostructure (TDN) was synthesized a one-step annealing process, providing DNA fixation, target recognition, signal amplification and space regulation. Based on the integration of this multifunctional structure, the sensing interface was assembled in one step.

View Article and Find Full Text PDF

Reversible electrochromic supercapacitors (ESCs) have attracted considerable interest as visual display screens. The use of ESCs in combination with a photoelectrochemical (PEC) biosensor promises to improve the detection efficiency. Herein, a visual PEC biosensor is developed by introducing a circuit module between a PEC-sensing platform (PSP) and a reversible ESC for Cry1Ab protein detection.

View Article and Find Full Text PDF

Pursuing a more efficient signal amplification strategy is highly demanded for improving the performance of the promising cathodic photoelectrochemical (PEC) sensors. In this work, we present an extremely effective dual signal amplification strategy by the integration of a -scheme nanohybrids-based photocathode with the effective signal modulation of an organic photoelectrochemical transistor (OPECT) device. Specifically, photocathodic gate material of CdTe-BiOBr nanohybrids with a -scheme electron-transfer route was designed and synthesized for preliminary improvement of the activity of the photogate; afterward, signal modulation of the OPECT system by the photocathodic gate of CdTe-BiOBr was then accomplished for further signal amplification by 2 orders of magnitude.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) contamination has received considerable attention for the serious harm it causes and its wide distribution. Hence, its efficient monitoring is of great importance. Herein, a space-confined electrochemical aptasensor for AFB1 detection is developed using a conductive hydrogel.

View Article and Find Full Text PDF