Publications by authors named "Tianxuan Huang"

The new hohlraum experimental platform and the quasi-3D simulation model are developed to enable the study of the indirect drive experiment using the six-cylinder-port hohlraum for the first time. It is also the first implosion experiment for the six laser-entrance-hole hohlraum to effectively use all the laser beams of the laser facility that is primarily designed for the cylindrical hohlraum. The experiments performed at the 100 kJ Laser Facility produce a peak hohlraum radiation temperature of ∼222  eV for ∼80  kJ and 2 ns square laser pulse.

View Article and Find Full Text PDF

In inertial confinement approaches to fusion, the asymmetry of target implosion is a major obstacle to achieving high gain in the laboratory. A recently proposed octahedral spherical hohlraum makes it possible to naturally create spherical target irradiation without supplementary symmetry control. Before any decision is made to pursue an ignition-scale laser system based on the octahedral hohlraum, one needs to test the concept with the existing facilities.

View Article and Find Full Text PDF

In inertial confinement fusion, quantitative and high-spatial resolution ([Formula: see text]m) measurements of the X-rays self-emitted by the hotspot are critical for studying the physical processes of the implosion stagnation stage. Herein, the 8 ± 0.39-keV monochromatic X-ray distribution from the entire hotspot is quantitatively observed in 5-[Formula: see text]m spatial resolution using a Kirkpatrick-Baez microscope, with impacts from the responses of the diagnosis system removed, for the first time, in implosion experiments at the 100 kJ laser facility in China.

View Article and Find Full Text PDF

High-space-resolving information of hotspot electron temperature is a foundation for further research on physical processes of implosion in inertial confinement fusion. This work proposed a novel high-space-resolving electron temperature detector, which is based on the bremsstrahlung radiation mechanism of the implosion hotspot and uses two-channel Kirkpatrick-Baez microscopes. In this novel detector, an optical quasi-coaxis method was used to eliminate the strong impact of the view field difference on the high space resolution and correctness of the electron temperature diagnosis, and a compound KB microscope method was proposed to reduce the number of spherical reflectors and save space.

View Article and Find Full Text PDF

The accuracy of the determination of the burn-averaged ion temperature of inertial confinement fusion implosions depends on the unfold process, including deconvolution and convolution methods, and the function, i.e., the detector response, used to fit the signals measured by neutron time-of-flight (nToF) detectors.

View Article and Find Full Text PDF

X-ray imaging plates are one of the most important X-ray imaging detectors and are widely used in inertial-confinement fusion experiments. However, their linear response range, which is the foundation of their quantitative data analysis, has not been sufficiently deeply investigated. In this work, we develop an X-ray fluorescer calibration system and carefully explore the linear response range of X-ray imaging plates.

View Article and Find Full Text PDF

A coaxial, high performance diamond detector has been developed for neutron diagnostics of inertial confinement fusion at ShenGuangIII laser facility. A Φ10 mm × 1 mm "optical grade" chemical-vapor deposition diamond wafer is assembled in coaxial-designing housing, and the signal is linked to a SubMiniature A connector by the cathode cone. The coaxial diamond detector performs excellently for neutron measurement with the full width at half maximum of response time to be 444 ps for a 50 Ω measurement system.

View Article and Find Full Text PDF

A novel flat-response x-ray detector has been developed for the measurement of radiation flux from a hohlraum. In order to obtain a flat response in the photon energy range of 0.1-4 keV, it is found that both the cathode and the filter of the detector can be made of gold.

View Article and Find Full Text PDF