Land subsidence and local sea-level rise are well-known on-going hazards that negatively impacting coastal regions, exacerbating coastal flooding, threatening infrastructure stability, accelerating erosion, and amplifying the risks of inundation and property damage. This study used four techniques to quantify land deformation rates in the Texas Coastal Bend region and to investigate the controlling factors on two different spatiotemporal scales: (1) local scale, where biweekly temporal gravity and campaign Global Navigation Satellite System (GNSS) measurements were acquired at six locations over 2 years (October 2020-September 2022); and (2) regional scale, where vertical displacement time series were extracted from the Interferometric Synthetic Aperture Radar (InSAR) and 15 permanent GNSS stations over 5 years (January 2017-November 2021). The observed inconsistency between land deformation rates derived from gravity (range: -33.
View Article and Find Full Text PDFVariations in Global Positioning Systems (GPSs) have been used for tracking users' locations. However, when location tracking is needed for an indoor space, such as a house or building, then an alternative means of precise position tracking may be required because GPS signals can be severely attenuated or completely blocked. In our approach to indoor positioning, we developed an indoor localization system that minimizes the amount of effort and cost needed by the end user to put the system to use.
View Article and Find Full Text PDFThe rapid advancement and increasing number of applications of Unmanned Aerial Vehicle (UAV) swarm systems have garnered significant attention in recent years. These systems offer a multitude of uses and demonstrate great potential in diverse fields, ranging from surveillance and reconnaissance to search and rescue operations. However, the deployment of UAV swarms in dynamic environments necessitates the development of robust experimental designs to ensure their reliability and effectiveness.
View Article and Find Full Text PDFThis paper introduces a framework for inferring human activities in mobile devices by computing spatial contexts, temporal contexts, spatiotemporal contexts, and user contexts. A spatial context is a significant location that is defined as a geofence, which can be a node associated with a circle, or a polygon; a temporal context contains time-related information that can be e.g.
View Article and Find Full Text PDFLow-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties.
View Article and Find Full Text PDF