Innovative cancer treatments, which improve adjuvant therapy and reduce adverse events, are desperately needed. Nanoparticles provide controlled intracellular biomolecule delivery in the absence of activating external cell surface receptors. Prior reports suggest that intracrine signaling, following overexpression of basic fibroblast growth factor (FGF-2) after viral transduction, has a toxic effect on diseased cells.
View Article and Find Full Text PDFRNA interference represents a potent intervention for cancer treatment but requires a robust delivery agent for transporting gene-modulating molecules, such as small interfering RNAs (siRNAs). Although numerous molecular approaches for siRNA delivery are adequate in vitro, delivery to therapeutic targets in vivo is limited by payload integrity, cell targeting, efficient cell uptake, and membrane penetration. We constructed nonviral biomaterials to transport small nucleic acids to cell targets, including tumor cells, on the basis of the self-assembling and cell-penetrating activities of the adenovirus capsid penton base.
View Article and Find Full Text PDFPolysaccharides or polymeric carbohydrate molecules are long chains of monosaccharides that are linked by glycosidic bonds. The naturally based structural materials are widely applied in biomedical applications. This article covers four different types of polysaccharides (i.
View Article and Find Full Text PDFIntracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) were developed for the internalization and release of doxorubicin hydrochloride (DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently cross-linked sub-microspheres were formed via exposure to green light, in order to investigate effects of cross-linking on drug release and cell internalization, compared to traditional techniques, such as ultraviolet (UV) light irradiation.
View Article and Find Full Text PDFTheta-gels are hydrogels that form during the solidification and phase separation of two dislike polymers, in which a low molecular weight polymer behaves as a porogen and is removed through dialysis. For this study, interpenetrating polymer network (IPN) hydrogels were formed between polyvinyl alcohol (PVA) and gelatin using theta-gel fabrication techniques, i.e.
View Article and Find Full Text PDFβ-Cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of nonpolar guest molecules to form noncovalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically cross-linked hydrogel networks upon mixing with a guest molecule. Herein, the development and characterization of self-healing, thermoresponsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)), are described.
View Article and Find Full Text PDFThe intracellular delivery of growth factors increases opportunities for controlling cell behavior and maintaining tissue homeostasis. Recently, VEGFA was reported to enhance osteogenic differentiation of mesenchymal stem cells (MSCs) through an intracrine mechanism, suggesting a new strategy to promote bone tissue formation in osteoporotic patients. The goal of this study was to design and fabricate ligand-conjugated alginate-graft-poly(ethylene glycol) microspheres for intracellular delivery and release of VEGFA in primary human MSCs to enhance osteogenic differentiation as a potential therapeutic.
View Article and Find Full Text PDFThe aza-semi-crown pentadentate ligand rigidified by pyridine and piperidine rings was designed and synthesized. It can react with Mn(II) in water to form complex with improved longitudinal relaxivity, leading to efficient signal intensity enhancement of vascular vessels under a clinical magnetic resonance imaging scanner.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
January 2010
Controlled self-assembly of organic/inorganic magnetic hybrid materials have important applications in magnetic resonance imaging (MRI). In this study, a widely used polycation polyethylenimine was conjugated with gadopentetic acid (Gd-DTPA) as a gadolinium bearing polyelectrolyte (Gd-DTPA-PEI). Next, multilayers of Gd-DTPA-PEI were coated on silica nanoparticles through layer-by-layer (LbL) self-assembly with polyanions as monitored by dynamic light scattering, zeta-potential, and scanning electron microscopy.
View Article and Find Full Text PDF