Myocardial infarction (MI) results in an impaired heart function. Conductive hydrogel patch-based therapy has been considered as a promising strategy for cardiac repair after MI. In our study, we fabricated a three-dimensional (3D) printed conductive hydrogel patch made of fibrinogen scaffolds and mesenchymal stem cells (MSCs) combined with graphene oxide (GO) flakes (MSC@GO), capitalizing on GO's excellent mechanical property and electrical conductivity.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) hold great promise for widespread applications in biomedicine and nanomedicine. MOFs are one of the most fascinating nanocarriers for drug delivery, benefiting from their high porosity and facile modification. Furthermore, the tailored components of MOFs can be therapeutic agents for various treatments, including drugs as organic ligands of MOFs, active metal as central metal ions of MOFs, and their combinations as carrier-free MOF-based nanodrug.
View Article and Find Full Text PDFThe development of multifunction nanoplatforms integrating accurate diagnosis and efficient therapy is of great significance for the precise treatment of tumors. Gold nanoparticles (AuNPs) possessing hallmark features of computed tomography (CT) imaging and photothermal conversion capability hold great potential in tumor theranostics. In this study, taking the advantages of outstanding biocompatibility, interesting anti-inflammatory and immunomodulatory properties, and abundant amino acid residues of silk fibroin (SF), a multifunctional Gd-hybridized AuNP nanoplatform was constructed using SF as a stabilizer and reductant via a facile one-pot biomimetic method, denoted as Gd:AuNPs@SF.
View Article and Find Full Text PDFTransplanting functional cells to treat myocardial infarction (MI), a major disease threatening human health, has become the focus of global therapy. However, the efficacy has not been well anticipated, partly due to the lack of microvascular system that supplies nutrients and oxygen. Here, spheroids of early vascular cells (EVCs) derived from human embryonic stem cells (hESCs), rather than single-cell forms, as transplant "seeds" for reconstructing microvascular networks, are proposed.
View Article and Find Full Text PDFNanoparticle-mediated photothermal therapy (PTT) has shown promising capability for tumor therapy through the high local temperature at the tumor site generated by a photothermal agent (PTA) under visible or near-infrared (NIR) irradiation. Improving the accumulation of PTA at the tumor site is crucial to achieving effective photothermal treatment. Here, we developed temperature-activatable engineered neutrophils (Ne) by combining indocyanine green (ICG)-loaded magnetic silica NIR-sensitive nanoparticles (NSNP), which provide the potential for dual-targeted photothermal therapy.
View Article and Find Full Text PDFHere, we report a rapid, sensitive and selective colorimetric assay for sulfite (SO32-) based on the intrinsic oxidase-like activity of 2D cobalt oxyhydroxide nanosheets (CoOOH NSs). The 2D CoOOH nanozyme could directly oxidize 3,3',5,5'-tetramethylbenzidine (TMB) into blue products (TMBox) in an aerobic solution without H2O2. Interestingly, the presence of SO32- could effectively inhibit the CoOOH NS-O2-TMB reaction system and thus caused changes in color and absorbance, which facilitated a colorimetric sensor for sulfite.
View Article and Find Full Text PDFModulating the surface properties of nanoparticles (NPs) is an important approach to accomplish immune escape, prolonged the blood retention time, and enhance the ability of targeted drug delivery. The camouflage of cancer cell membrane onto nanoparticles has been proved to be an ideal approach to enhance active targeting ability of NPs. Herein, we isolated the membrane of melanoma cells to coat doxorubicin (DOX) and indocyanine green (ICG)-loaded hollow copper sulfide NPs (ID-HCuSNP@B16F10) for targeted photothermal therapy, photoacoustic imaging, and chemotherapy.
View Article and Find Full Text PDFTargeted drug delivery by nanoparticles (NPs) is an essential technique to achieve the ideal therapeutic effect for cancer. However, it requires large amounts of work to imitate the biomarkers on the surface of the cell membrane and cannot fully retain the bio-function and interactions among cells. Cell membranes have been studied to form biomimetic NPs to achieve functions like immune escape, targeted drug delivery, and immune modulation, which inherit the ability to interact with the in vivo environments.
View Article and Find Full Text PDFPancreatic cancer is a highly malignant disease with a 5-year survival rate <5% mainly due to lack of early diagnosis and effective therapy. In an effort to improve the early diagnostic rate of pancreatic cancer, a nanoprobe Fe3O4@SiO2 modified with anti-mesothelin antibody (A-MFS) was prepared to target cells and tumor tissues highly expressing mesothelin in vitro (human pancreatic cancer cell line SW1990) and in vivo (subcutaneously transplanted tumors) studies. The A-MFS probe was successfully prepared and was spherical and uniform with a hydrodynamic diameter between 110 and 130 nm.
View Article and Find Full Text PDF