Tuberculosis (TB) is a serious cause of infectious death worldwide. Recent studies have reported that about 30% of the Mtb proteome was modified post-translationally, indicating that their functions are essential for drug resistance, mycobacterial survival, and pathogenicity. Among them, lysine acetylation, reversibly regulated by acetyltransferase and deacetylase, has important roles involved in energy metabolism, cellular adaptation, and protein interactions.
View Article and Find Full Text PDFLysine acylation has been extensively investigated due to its regulatory role in a diverse range of biological functions across prokaryotic and eukaryotic species. In-depth acylomic profiles have the potential to enhance comprehension of the biological implications of organisms. However, the extent of research on global acylation profiles in microorganisms is limited.
View Article and Find Full Text PDFProtein-modifying enzymes regulate the dynamics of myriad post-translational modification (PTM) substrates. Precise characterization of enzyme-substrate associations is essential for the molecular basis of cellular function and phenotype. Methods for direct capturing global substrates of protein-modifying enzymes in living cells are with many challenges, and yet largely unexplored.
View Article and Find Full Text PDFIschemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are the two primary etiologies of end-stage heart failure. However, there remains a dearth of comprehensive understanding the global perspective and the dynamics of the proteome and phosphoproteome in ICM and DCM, which hinders the profound comprehension of pivotal biological characteristics as well as differences in signal transduction activation mechanisms between these two major types of heart failure. We conducted high-throughput quantification proteomics and phosphoproteomics analysis of clinical heart tissues with ICM or DCM, which provided us the system-wide molecular insights into pathogenesis of clinical heart failure in both ICM and DCM.
View Article and Find Full Text PDFAlthough engineered T cells with transgenic chimeric antigen receptors (CARs) have made a breakthrough in cancer therapeutics, this approach still faces many challenges in the specificity, efficacy, and self-safety of genetic engineering. Here, we developed a nano-biohybrid DNA engager-reprogrammed T-cell receptor (EN-TCR) system to improve the specificity and efficacy, mitigate the excessive activation, and shield against risks from transgenesis, thus achieving a diversiform and precise control of the T-cell response. Utilizing modular assembly, the EN-TCR system can graft different specificities on T cells via antibody assembly.
View Article and Find Full Text PDFLysine acetylation is a common posttranslational modification that regulates numerous biochemical functions in both eukaryotic and prokaryotic species. In addition, several new non-acetyl acylations are structurally different from lysine acetylation and participate in diverse physiological functions. Here, a comprehensive analysis of several lysine acylomes was performed by combining the high-affinity antibody enrichment with high-resolution LC-MS/MS.
View Article and Find Full Text PDF