Naturally colored cotton (NCC; Gossypium spp.) does not require additional chemical dyeing and is an environmentally friendly textile material with great research potential and applications. Our previous study using linkage and association mapping identified TRANSPARENT TESTA 2 (Gh_TT2) as acting on the proanthocyanin synthesis pathway.
View Article and Find Full Text PDFKinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of kinesin gene family in cotton (Gossypium spp.
View Article and Find Full Text PDFKinesin is a kind of motor protein, which interacts with microtubule filaments and regulates cellulose synthesis. Cotton fiber is a natural model for studying the cellular development and cellulose synthesis. Therefore, a systematic research of Kinesin gene family in cotton (Gossypium spp.
View Article and Find Full Text PDFRed foliated cotton is a typical dominant mutation trait in upland cotton (Gossypium hirsutum). Although mutants have been described, few responsible genes have been identified and characterized. In this study, we performed map-based cloning of the red foliated mutant gene (Re) derived from the cross between G.
View Article and Find Full Text PDFRf candidate genes were related to the super D05_PPR-cluster and verified to be individually nonfunctional. Restorer of fertility (Rf) genes of cytoplasmic male sterility (CMS) is commonly found to be PPR (pentatricopeptide repeat) genes, which are mostly located in a cluster of PPR genes with high similarity. Here, Homocap-seq was applied to analyze PPR clusters in 'three lines,' and we found broad variations within the D05_PPR-cluster in a restorer line and deduced that the D05_PPR-cluster was associated with fertility restoration.
View Article and Find Full Text PDFUnlabelled: Nulliplex branch is a key architectural trait in sea-island cotton ( L.), but its genetic basis is not well understood. Here we investigated the genetic basis of the nulliplex-branch trait in cotton by combining newly created bulked segregant analysis (BSA)-seq data, published RNA-seq data, and published whole-genome resequencing (WGR) data.
View Article and Find Full Text PDFThe high-quality reference-grade genome for Gossupium tomentosum can greatly promote the progress in biological research and introgression breeding for the mainly cultivated species, G. hirsutum. Here, we report a high-quality genome assembly for G.
View Article and Find Full Text PDFOne sub-MAGIC population was genotyped using SLAF-seq, and QTLs and candidate genes for agronomic traits were identified in Upland cotton. The agronomic traits of Upland cotton have serious impacts on cotton production, as well as economic benefits. To discover the genetic basis of important agronomic traits in Upland cotton, a subset MAGIC (multi-parent advanced generation inter-cross) population containing 372 lines (SMLs) was selected from an 8-way MAGIC population with 960 lines.
View Article and Find Full Text PDFThe two new world tetraploid cottons, Gossypium hirsutum and Gossypium barbadense, are cultivated worldwide and are characterised by a high yield and superior fibre quality, respectively. Historical genetic introgression has been reported between them; however, the existence of introgression and its genetic effects on agronomic traits remain unclear with regard to independent breeding of G. hirsutum (Upland cotton) and G.
View Article and Find Full Text PDFPlant Biotechnol J
February 2018
Brown fibre cotton is an environmental-friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions.
View Article and Find Full Text PDFThe quality of fiber is significant in the upland cotton industry. As complex quantitative traits, fiber quality traits are worth studying at a genetic level. To investigate the genetic architecture of fiber quality traits, we conducted an association analysis using a multi-parent advanced generation inter-cross (MAGIC) population developed from eight parents and comprised of 960 lines.
View Article and Find Full Text PDFMicroRNAs (miRNAs) modulate many biological processes through inactivation of specific mRNA targets such as those encoding transcription factors. A delicate spatial/temporal balance between specific miRNAs and their targets is central to achieving the appropriate biological outcomes. Somatic embryogenesis in cotton (Gossypium hirsutum), which goes through initial cellular dedifferentiation, callus proliferation, and somatic embryo development, is of great importance for both fundamental research and biotechnological applications.
View Article and Find Full Text PDF