Crown ethers (CEs), macrocyclic polyethers, have attracted significant attention in supramolecular chemistry. It is known that they have many isomers due to their flexibility. It is challenging to select some exact conformation and tune the following self-assembly structure of CEs, and it has rarely been reported to date.
View Article and Find Full Text PDFAs a typical polycyclic aromatic hydrocarbon (PAH), phenanthrene is often present in diverse environments, leading to severe environmental contamination. However, bacterial degradation plays a crucial role in remediating phenanthrene contamination and has been widely adopted. The widely distributed marine Roseobacter-clade bacteria are frequently found in phenanthrene-contaminated environments, but their catalyzing ability and related molecular mechanism have been rarely elucidated.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2023
Understanding the ice recrystallization inhibition (IRI) mechanism is of fundamental importance for the rational design of novel antifreeze protein mimetics and reducing IR-related damage. In this communication, using quantitive experimental methods and molecular dynamics simulations we demonstrate that zwitterionic poly(carboxybetaine methacrylate) (PCBMA) can serve as a novel IRI-active substance. This work unravels the atomic-level details of the IRI mechanism of zwitterionic antifreeze protein mimetics and provides insight into the development of next-generation antifreeze protein mimetics.
View Article and Find Full Text PDFDesilylative coupling involving C-Si bond cleavage has emerged as one of the most important synthetic strategies for carbon-carbon/heteroatom bond formation in solution chemistry. However, in on-surface chemistry, C-Si bond cleavage remains a synthetic challenge. Here, we report the implementation of C(sp)-Si bond cleavage and subsequent C-C bond formation on metal surfaces.
View Article and Find Full Text PDFThe high cost of noble metal catalysts has been a major factor limiting their industrial applications. It is thus of strong interest to develop catalysts with minimum metal loading. Here, we designed and prepared a single-atom ruthenium catalyst through a cascade anchoring strategy to maximize the efficiency of Ru atoms for acetylene hydrochlorination.
View Article and Find Full Text PDF