Publications by authors named "Tianshuo Qiu"

With the rapid improvement of equipment integration technology, multi-spectrum detectors are integrated into compact volumes and widely used for object detection. Confront with this challenge, it is essential to propose a strategy to design a single-layer metasurface with multi-spectrum responses in microwave and infrared ranges. In this work, we proposed a method of designing meta-atoms, which is capable of achieving functional electromagnetic response at microwave and infrared individually.

View Article and Find Full Text PDF

Metasurfaces have exhibited unprecedented degree of freedom in manipulating electromagnetic (EM) waves and thus provide fantastic front-end interfaces for smart systems. Here we show a framework for perception enhancement based on vision-driven metasurface. Human's eye movements are matched with microwave radiations to extend the humans' perception spectrum.

View Article and Find Full Text PDF

The continuous increase in communication capacity is accompanied by an increase in transmission frequency, which creates new demands on the transmission efficiency in modern. Signal relay transmission can increase the transmission distance, however, conventional repeaters relay the signal in a specified direction, which is difficult to accommodate communication when a receiving device suddenly appears around the repeater. In this work, we propose a new signal transmission repeater, which is implemented by an adaptively reconfigurable multi-beam reflective metasurface based on multispectral detection.

View Article and Find Full Text PDF

The fifth-generation (5G) wireless communication has an urgent need for target tracking. Digital programmable metasurface (DPM) may offer an intelligent and efficient solution owing to its powerful and flexible controls of electromagnetic waves and advantages of lower cost, less complexity and smaller size than the traditional antenna array. Here, we report an intelligent metasurface system to perform target tracking and wireless communications, in which computer vision integrated with a convolutional neural network (CNN) is used to automatically detect the locations of moving targets, and the dual-polarized DPM integrated with a pre-trained artificial neural network (ANN) serves to realize the smart beam tracking and wireless communications.

View Article and Find Full Text PDF

Metasurfaces with simultaneously and independently controllable amplitude and phase have provided a higher degree of freedom in manipulating electromagnetic (EM) waves. Compared with phase- or amplitude-only modulation, the capability of simultaneously controlling the phase and amplitude of EM waves can enable holography with a higher resolution. However, this drastically increases the design complexity of holographic metasurfaces, and the design process is usually quite time-consuming.

View Article and Find Full Text PDF

Metasurfaces have provided unprecedented freedom for manipulating electromagnetic waves. In metasurface design, massive meta-atoms have to be optimized to produce the desired phase profiles, which is time-consuming and sometimes prohibitive. In this paper, we propose a fast accurate inverse method of designing functional metasurfaces based on transfer learning, which can generate metasurface patterns monolithically from input phase profiles for specific functions.

View Article and Find Full Text PDF

Chromatism generally exists in most metasurfaces. Because of this, the deflected angle of metasurface reflectors usually varies with frequency. This inevitably hinders wide applications of metasurfaces to broadband signal scenarios.

View Article and Find Full Text PDF

An anisotropic coding metasurface (CM) is proposed for achieving circular-to-linear polarization conversion and beam deflection. Different phase coding consequences were independently achieved for two orthogonal linear polarized (LP) waves. Thus by elaborately designing coding sequences of the metasurfaces, different functions can be achieved, respectively for waves polarized along two orthogonal directions.

View Article and Find Full Text PDF

Metasurfaces provide unprecedented routes to manipulations on electromagnetic waves, which can realize many exotic functionalities. Despite the rapid development of metasurfaces in recent years, the design process of metasurface is still time-consuming and computational resource-consuming. Moreover, it is quite complicated for layman users to design metasurfaces as plenty of specialized knowledge is required.

View Article and Find Full Text PDF