The interaction between foot-and-mouth disease virus (FMDV) and the host is extremely important for virus infection, but there are few researches on it, which is not conducive to vaccine development and FMD control. In this study, we designed a porcine genome-scale CRISPR/Cas9 knockout library containing 93,859 single guide RNAs targeting 16,886 protein-coding genes, 25 long ncRNAs, and 463 microRNAs. Using this library, several previously unreported genes required for FMDV infection are highly enriched post-FMDV selection in IBRS-2 cells.
View Article and Find Full Text PDFCovering: 2016 to mid 2023Transition metal catalysis, known for its remarkable capacity to expedite the assembly of molecular complexity from readily available starting materials in a single operation, occupies a central position in contemporary chemical synthesis. Within this landscape, gold-catalyzed reactions present a novel and versatile paradigm, offering robust frameworks for accessing diverse structural motifs. In this review, we highlighted a curated selection of publications in the past 8 years, focusing on the deployment of homogeneous gold catalysis in the ring-forming step for the total synthesis of natural products.
View Article and Find Full Text PDFConducting hydrogels can be used to fabricate bioelectronic devices that are soft for improved cell- and tissue-interfacing. Those based on conjugated polymers, such as poly(3,4-ethylene-dioxythiophene):polystyrene sulfonate (PEDOT:PSS), can be made simply with solution-based processing techniques, yet the influence of fabrication variables on final gel properties is not fully understood. In this study, we investigated if PEDOT:PSS cross-linking could be manipulated by changing the concentration of a gelling agent, ionic liquid, in the hydrogel precursor mixture.
View Article and Find Full Text PDFHigh-performance inorganic-organic lead halide perovskite solar cells (PSCs) are often fabricated with a liquid additive such as dimethyl sulfoxide (DMSO), which retards crystallization and reduces roughness and pinholes in the perovskite layers. However, DMSO can be trapped during perovskite film formation and induce voids and undesired reaction byproducts upon later processing steps. Here, it is shown that the amount of residual DMSO can be reduced in as-spin-coated films significantly through use of preheated substrates, or a so-called hot-casting method.
View Article and Find Full Text PDFThe elucidation of structure-to-function relationships for two-dimensional (2D) hybrid perovskites remains a primary challenge for engineering efficient perovskite-based devices. By combining insights from theory and experiment, we describe the introduction of bifunctional ligands that are capable of making strong hydrogen bonds within the organic bilayer. We find that stronger intermolecular interactions draw charge away from the perovskite layers, and we have formulated a simple and intuitive computational descriptor, the charge separation descriptor (CSD), that accurately describes the relationship between the Pb-I-Pb angle, band gap, and in-plane charge transport with the strength of these interactions.
View Article and Find Full Text PDFTo understand degradation routes and improve the stability of perovskite solar cells (PSCs), accelerated aging tests are needed. Here, we use elevated temperatures (up to 110°C) to quantify the accelerated degradation of encapsulated CsPbI PSCs under constant illumination. Incorporating a two-dimensional (2D) CsPbICl capping layer between the perovskite active layer and hole-transport layer stabilizes the interface while increasing power conversion efficiency of the all-inorganic PSCs from 14.
View Article and Find Full Text PDFSpectral sensing is increasingly used in applications ranging from industrial process monitoring to agriculture. Sensing is usually performed by measuring reflected or transmitted light with a spectrometer and processing the resulting spectra. However, realizing compact and mass-manufacturable spectrometers is a major challenge, particularly in the infrared spectral region where chemical information is most prominent.
View Article and Find Full Text PDFThe Rayleigh wave excited by the electromagnetic acoustic transducer (EMAT) is an effective selection for surface plane stress measurement. However, the propagation velocity of Rayleigh wave on the metal surface is easily affected by the original rolling process. Besides, the direction of the plane stress state is usually unknown, which means that the propagation velocity cannot be expressed linearly by the stress.
View Article and Find Full Text PDFPerovskite solar cells (PSCs) have rapidly emerged as one of the hottest topics in the photovoltaics community owing to their high power-conversion efficiencies (PCE), and the promise to be produced at low cost. Among various PSCs, typical 3D perovskite-based solar cells deliver high PCE but they suffer from severe instability, which restricts their practical applications. In contrast to 3D perovskites, 2D perovskites that incorporate larger, less volatile, and generally more hydrophobic organic cations exhibit much improved thermal, chemical, and environmental stability.
View Article and Find Full Text PDFAccessing vertical orientation of two-dimensional (2D) perovskite films is key to achieving high-performance solar cells with these materials. Herein, we report on solvent-vapor annealing (SVA) as a general postdeposition strategy to induce strong vertical orientation across broad classes of 2D perovskite films. We do not observe any local compositional drifts that would result in impure phases during SVA.
View Article and Find Full Text PDFIgG subclass diversification is common in placental mammals. It has been well documented in humans and mice that different IgG subclasses, with diversified functions, synergistically regulate humoral immunity. However, our knowledge on the genomic and functional diversification of IgG subclasses in the pig, a mammalian species with high agricultural and biomedical importance, is incomplete.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFWe describe a screening approach to identify customized substrates for serum-free human mesenchymal stromal cell (hMSC) culture. In particular, we combine a biomaterials screening approach with design of experiments (DOE) and multivariate analysis (MVA) to understand the effects of substrate stiffness, substrate adhesivity, and media composition on hMSC behavior in vitro. This approach enabled identification of poly(ethylene glycol)-based and integrin binding hydrogel substrate compositions that supported functional hMSC expansion in multiple serum-containing and serum-free media, as well as the expansion of MSCs from multiple, distinct sources.
View Article and Find Full Text PDFOptical read-out of motion is widely used in sensing applications. Recent developments in micro- and nano-optomechanical systems have given rise to on-chip mechanical sensing platforms, potentially leading to compact and integrated optical motion sensors. However, these systems typically exploit narrow spectral resonances and therefore require tuneable lasers with narrow linewidth and low spectral noise, which makes the integration of the read-out extremely challenging.
View Article and Find Full Text PDFTypical lead-based perovskites solar cells show an onset of photogeneration around 800 nm, leaving plenty of spectral loss in the near-infrared (NIR). Extending light absorption beyond 800 nm into the NIR should increase photocurrent generation and further improve photovoltaic efficiency of perovskite solar cells (PSCs). Here, a simple and facile approach is reported to incorporate a NIR-chromophore that is also a Lewis-base into perovskite absorbers to broaden their photoresponse and increase their photovoltaic efficiency.
View Article and Find Full Text PDFOptical switches connect optical circuits, and route optical signals in networks. Nano-electromechanical systems can in principle enable compact and power-effective switches that can be integrated in photonic circuits. We proposed an optical switch based on four coupled waveguides arranged in three-dimensional configuration.
View Article and Find Full Text PDFWe propose theoretically and demonstrate experimentally a dislocated double-layer metal grating structure, which operates as a unidirectional coupler capable of launching surface plasmon polaritons in a desired direction under normal illumination. The structure consists of a slanted dielectric grating sandwiched between two gold gratings. The upper gold grating has a nonzero lateral relative displacement with respect to the lower one.
View Article and Find Full Text PDFWe have fabricated gold (Au) elliptical nanodisc (ND) arrays via three-beam interference lithography and electron beam deposition of gold. The enhanced photoluminescence intensity and emission rate of quantum dots (QDs) near to the Au elliptical NDs have been studied by tuning the nearest distance between quantum dots and Au elliptical NDs. We found that the photoluminescence intensity is polarization-dependent with the degree of polarization being equal to that of the light extinction of the Au elliptical NDs, while the emission rate is polarization-independent.
View Article and Find Full Text PDFLocalized surface plasmon resonance (LSPR)-based sensing has found wide applications in medical diagnosis, food safety regulation and environmental monitoring. Compared with commercial propagating surface plasmon resonance (PSPR)-based sensors, LSPR ones are simple, cost-effective and suitable for measuring local refractive index changes. However, the figure of merit (FOM) values of LSPR sensors are generally 1-2 orders of magnitude smaller than those of PSPR ones, preventing the widespread use of LSPR sensors.
View Article and Find Full Text PDFThirteen rice CMS lines derived from different cytoplasms were classified into eight groups by PCR amplification on mtDNA. The orf79 gene, which causes Boro II CMS, possibly results in Dian1-CMS. Thirteen rice cytoplasmic male sterile (CMS) lines derived from different cytoplasms are widely used for hybrid rice breeding.
View Article and Find Full Text PDF