Publications by authors named "Tianna Edwards"

Chemical crosslinks known as advanced glycation end-products (AGEs) are associated with increased bone fracture risk and deteriorated bone mechanical properties. However, measurement of bone AGEs via ex vivo and in vitro methods has been limited to quantification of bulk fluorescent AGEs (fAGEs) and pentosidine only, which is a crosslinking fluorescent AGE. However, a non-crosslinking and non-fluorescent AGE such as carboxymethyl-lysine (CML) is found to be 40-100 times higher in quantity than pentosidine, but only one previous study has reported it in cortical bone, and one study reported it in trabecular bone.

View Article and Find Full Text PDF