Publications by authors named "Tianmin Fu"

Leveraging the rich structural information provided by AlphaFold, we used integrated experimental approaches to characterize the HerA-DUF4297 (DUF) anti-phage defense system, in which DUF is of unknown function. To infer the function of DUF, we performed structure-guided genomic analysis and found that DUF homologs are universally present in bacterial immune defense systems. One notable homolog of DUF is Cap4, a universal effector with nuclease activity in CBASS, the most prevalent anti-phage system in bacteria.

View Article and Find Full Text PDF

Argonaute proteins (Agos) represent a highly conserved family of proteins prevalent in all domains of life and have been implicated in various biological processes. Based on the domain architecture, Agos can be divided into long Agos and short Agos. While long Agos have been extensively studied over the past two decades, short Agos, found exclusively in prokaryotes, have recently gained attention for their roles in prokaryotic immune defence against mobile genetic elements, such as plasmids and phages.

View Article and Find Full Text PDF

Horizontal gene transfer is a key driver of bacterial evolution, but it also presents severe risks to bacteria by introducing invasive mobile genetic elements. To counter these threats, bacteria have developed various defense systems, including prokaryotic Argonautes (pAgos) and the DNA defense module DdmDE system. Through biochemical analysis, structural determination, and in vivo plasmid clearance assays, we elucidate the assembly and activation mechanisms of DdmDE, which eliminates small, multicopy plasmids.

View Article and Find Full Text PDF

Horizontal gene transfer is a key driver of bacterial evolution, but it also presents severe risks to bacteria by introducing invasive mobile genetic elements. To counter these threats, bacteria have developed various defense systems, including prokaryotic Argonautes (pAgo) and the D NA D efense M odule DdmDE system. Through biochemical analysis, structural determination, and plasmid clearance assays, we elucidate the assembly and activation mechanisms of DdmDE, which eliminates small, multicopy plasmids.

View Article and Find Full Text PDF

As one of the most prevalent anti-phage defense systems in prokaryotes, Gabija consists of a Gabija protein A (GajA) and a Gabija protein B (GajB). The assembly and function of the Gabija system remain unclear. Here we present cryo-EM structures of Bacillus cereus GajA and GajAB complex, revealing tetrameric and octameric assemblies, respectively.

View Article and Find Full Text PDF

Escherichia coli Septu system, an anti-phage defense system, comprises two components: PtuA and PtuB. PtuA contains an ATPase domain, while PtuB is predicted to function as a nuclease. Here we show that PtuA and PtuB form a stable complex with a 6:2 stoichiometry.

View Article and Find Full Text PDF

SIR2-HerA, a bacterial two-protein anti-phage defense system, induces bacterial death by depleting NAD upon phage infection. Biochemical reconstitution of SIR2, HerA, and the SIR2-HerA complex reveals a dynamic assembly process. Unlike other ATPases, HerA can form various oligomers, ranging from dimers to nonamers.

View Article and Find Full Text PDF

During asexual growth and replication cycles inside red blood cells, the malaria parasite Plasmodium falciparum primarily relies on glycolysis for energy supply, as its single mitochondrion performs little or no oxidative phosphorylation. Post merozoite invasion of a host red blood cell, the ring stage lasts approximately 20 hours and was traditionally thought to be metabolically quiescent. However, recent studies have shown that the ring stage is active in several energy-costly processes, including gene transcription, protein translation, protein export, and movement inside the host cell.

View Article and Find Full Text PDF

OSCA/TMEM63s form mechanically activated (MA) ion channels in plants and animals, respectively. OSCAs and related TMEM16s and transmembrane channel-like (TMC) proteins form homodimers with two pores. Here, we uncover an unanticipated monomeric configuration of TMEM63 proteins.

View Article and Find Full Text PDF

Although eukaryotic and long prokaryotic Argonaute proteins (pAgos) cleave nucleic acids, some short pAgos lack nuclease activity and hydrolyse NAD(P) to induce bacterial cell death. Here we present a hierarchical activation pathway for SPARTA, a short pAgo consisting of an Argonaute (Ago) protein and TIR-APAZ, an associated protein. SPARTA progresses through distinct oligomeric forms, including a monomeric apo state, a monomeric RNA-DNA-bound state, two dimeric RNA-DNA-bound states and a tetrameric RNA-DNA-bound active state.

View Article and Find Full Text PDF

The Holliday junction (HJ) is a DNA intermediate of homologous recombination, involved in many fundamental physiological processes. RuvB, an ATPase motor protein, drives branch migration of the Holliday junction with a mechanism that had yet to be elucidated. Here we report two cryo-EM structures of RuvB, providing a comprehensive understanding of HJ branch migration.

View Article and Find Full Text PDF

Exosome is an excellent vesicle for delivery of therapeutics, including RNAi and chemical drugs. The extremely high efficiency in cancer regression can partly be attributed to its fusion mechanism in delivering therapeutics to cytosol without endosome trapping. However, being composed of a lipid-bilayer membrane without specific recognition capacity for aimed-cells, the entry into nonspecific cells can lead to potential side-effects and toxicity.

View Article and Find Full Text PDF

To create a functional neural circuit, neurons develop a molecular identity to discriminate self from non-self. The invertebrate Dscam family and vertebrate Pcdh family are implicated in determining synaptic specificity. Recently identified in Chelicerata, a shortened Dscam (sDscam) has been shown to resemble the isoform-generating characters of both Dscam and Pcdh and represent an evolutionary transition.

View Article and Find Full Text PDF

Craspase is a newly identified Type III CRISPR-Cas system with two major components: Cas7-11 with nuclease activity and TPR-CHAT with protease activity. Craspases perform a delicate balancing act between nuclease and protease activity to achieve immune tolerance and immune defense in bacteria. See Ekundayo et al.

View Article and Find Full Text PDF

The GATOR2-GATOR1 signaling axis is essential for amino-acid-dependent mTORC1 activation. However, the molecular function of the GATOR2 complex remains unknown. Here, we report that disruption of the Ring domains of Mios, WDR24, or WDR59 completely impedes amino-acid-mediated mTORC1 activation.

View Article and Find Full Text PDF

Vacuolar-type adenosine triphosphatases (V-ATPases) not only function as rotary proton pumps in cellular organelles but also serve as signaling hubs. To identify the endogenous binding partners of V-ATPase, we collected a large dataset of human V-ATPases and did extensive classification and focused refinement of human V-ATPases. Unexpectedly, about 17% of particles in state 2 of human V-ATPases display additional density with an overall resolution of 3.

View Article and Find Full Text PDF

INTRODUCTION The nuclear pore complex (NPC) is the molecular conduit in the nuclear membrane of eukaryotic cells that regulates import and export of biomolecules between the nucleus and the cytosol, with vertebrate NPCs ~110 to 125 MDa in molecular mass and ~120 nm in diameter. NPCs are organized into four main rings: the cytoplasmic ring (CR) at the cytosolic side, the inner ring and the luminal ring on the plane of the nuclear membrane, and the nuclear ring facing the nucleus. Each ring possesses an approximate eightfold symmetry and is composed of multiple copies of different nucleoporins.

View Article and Find Full Text PDF

Human TMEM175, a noncanonical potassium (K) channel in endolysosomes, contributes to their pH stability and is implicated in the pathogenesis of Parkinson's disease (PD). Structurally, the TMEM175 family exhibits an architecture distinct from canonical potassium channels, as it lacks the typical TVGYG selectivity filter. Here, we show that human TMEM175 not only exhibits pH-dependent structural changes that reduce K permeation at acidic pH but also displays proton permeation.

View Article and Find Full Text PDF

SARS-CoV-2 is a highly pathogenic virus that evades antiviral immunity by interfering with host protein synthesis, mRNA stability, and protein trafficking. The SARS-CoV-2 nonstructural protein 1 (Nsp1) uses its C-terminal domain to block the messenger RNA (mRNA) entry channel of the 40S ribosome to inhibit host protein synthesis. However, how SARS-CoV-2 circumvents Nsp1-mediated suppression for viral protein synthesis and if the mechanism can be targeted therapeutically remain unclear.

View Article and Find Full Text PDF

Tumors can reprogram the functions of metabolic enzymes to fuel malignant growth; however, beyond their conventional functions, key metabolic enzymes have not been found to directly govern cell mitosis. Here, we report that glutamine synthetase (GS) promotes cell proliferation by licensing mitotic progression independently of its metabolic function. GS depletion, but not impairment of its enzymatic activity, results in mitotic arrest and multinucleation across multiple lung and liver cancer cell lines, patient-derived organoids and xenografted tumors.

View Article and Find Full Text PDF

TRPM2 is a calcium permeable non-selective cation channel involved in many important physiological processes and has divergent gating mechanisms across species. Structural studies have revealed that TRPM2 is gated by adenosine 5'-diphosphoribose that binds to the cytosolic domains of TRPM2 and calcium ions that are coordinated by residues in the transmembrane domain. However, the selectivity filter of human TRPM2 remains elusive due to the poor resolution in this region.

View Article and Find Full Text PDF

NLRP6 is important in host defense by inducing functional outcomes including inflammasome activation and interferon production. Here, we show that NLRP6 undergoes liquid-liquid phase separation (LLPS) upon interaction with double-stranded RNA (dsRNA) in vitro and in cells, and an intrinsically disordered poly-lysine sequence (K350-354) of NLRP6 is important for multivalent interactions, phase separation, and inflammasome activation. Nlrp6-deficient or Nlrp6 mutant mice show reduced inflammasome activation upon mouse hepatitis virus or rotavirus infection, and in steady state stimulated by intestinal microbiota, implicating NLRP6 LLPS in anti-microbial immunity.

View Article and Find Full Text PDF

As organelles of the innate immune system, inflammasomes activate caspase-1 and other inflammatory caspases that cleave gasdermin D (GSDMD). Caspase-1 also cleaves inactive precursors of the interleukin (IL)-1 family to generate mature cytokines such as IL-1β and IL-18. Cleaved GSDMD forms transmembrane pores to enable the release of IL-1 and to drive cell lysis through pyroptosis.

View Article and Find Full Text PDF