Porous membranes with superhydrophilicity and underwater superoleophobicity have attracted considerable attention for efficient oil/water emulsion separation. However, such membranes fail to remediate severe oil contamination in long-term applications and exhibit a serious water flux decline. Herein, a universal combination strategy integrating the high coverage of a mussel-inspired sticky interlayer and a double rigid cellulose nanofiber-amorphous calcium carbonate (CNF-ACC) composite outer layer is proposed to prepare a superhydrophilic coating surface with superior anti-oil-fouling properties on diverse substrates.
View Article and Find Full Text PDFLiquid separation methods are widely used in industrial and everyday applications, however, their applicability is often constrained by low efficiency, membrane fouling, and poor energy efficiency. Herein, a conceptually novel liquid-infused interfacial floatable porous membrane (LIIFPM) system for high-performance oil/water separation is proposed. The system functions by allowing a liquid to wet and fill a superamphiphilic porous membrane, thereby creating a stable liquid-infused interface that floats at the oil/water interface and prevents the passage of immiscible liquids.
View Article and Find Full Text PDF