This study aimed to validate the methylation of key genes in hepatocellular carcinoma (HCC) screened by bioinformatics analysis and explore whether they affected HCC cell proliferation, migration, and invasion. Using The Cancer Genome Atlas (TCGA) database, HCC-related differentially methylated positions (DMPs) were screened, genes corresponding to DMPs were selected, and prognosis-related genes were identified. A representative DMP was used to divide the DMPs into hyper- and hypomethylated groups.
View Article and Find Full Text PDFBackground: In this research, we aimed to investigate the biological functions of LIM domain only 3 (LMO3) in hepatocellular carcinoma (HCC) and uncover the underlying molecular mechanism in it.
Methods: HCC tissue microarray (n = 180) was used to analyze the correlation between LMO3 expression and clinicopathological findings. In vitro transwell matrigel invasion assay and annexin V anoikis assay in HCC cells were conducted to investigate LMO3 related biological functions.
Objective: To explore the action mechanisms of Huangqi Decoction Granules (, HQDG) on hepatitis B cirrhosis.
Methods: A total of 85 patients with hepatitis B cirrhosis were randomly divided into HQDG group (42 cases) and control group (43 cases) by a random number table and were treated with HQDG or placebo for 48 weeks (6 g per times and orally for 3 times a day), respectively. After RNA-sequencing of serum samples extracted from the patients, the differentially expressed genes (DEGs) in HQDG and control groups before and after treatment were separately screened.
Atractylodis Rhizoma is a traditional medicinal herb, which has antibacterial, antiviral, anti‑inflammatory and anti‑allergic, anticancer, gastroprotective and neuroprotective activities. It is widely used for treating fever, cold, phlegm, edema and arthralgia syndrome in South‑East Asian nations. In this study, 6 chemical compositions of Atractylodis Rhizoma were characterized by spectral analysis and their antiviral activities were evaluated in vitro and in vivo.
View Article and Find Full Text PDFBackground And Aim: Mitochondrial dysfunction plays a major role in critical initiating or propagating events in nonalcoholic fatty liver disease (NAFLD), but its pathogenesis remains obscure. Recently, microRNAs have been found to affect oxidant stress and lipid metabolism. In this study, we elucidated the functions of microRNA-421 in the development of NAFLD and identified its potential targets.
View Article and Find Full Text PDFBackground: Non-alcoholic fatty liver disease (NAFLD) is a clinical frequent disease. However, its pathogenesis still needs further study, especially the mechanism at the molecular level. The recent identified novel protein post-translational modification, lysine succinylation was reported involved in diverse metabolism and cellular processes.
View Article and Find Full Text PDF