Voltage imaging is a powerful technique for studying neuronal activity, but its effectiveness is often constrained by low signal-to-noise ratios (SNR). Traditional denoising methods, such as matrix factorization, impose rigid assumptions about noise and signal structures, while existing deep learning approaches fail to fully capture the rapid dynamics and complex dependencies inherent in voltage imaging data. Here, we introduce CellMincer, a novel self-supervised deep learning method specifically developed for denoising voltage imaging datasets.
View Article and Find Full Text PDFGSK-3β plays a critical role in regulating the Wnt/β-catenin signaling pathway, and manipulating GSK-3β in dendritic cells (DCs) has been shown to improve the antitumor efficacy of DC vaccines. Since the inhibition of GSK-3β leads to the activation of β-catenin, we hypothesize that blocking GSK-3β in DCs negatively regulates DC-mediated CD8 T cell immunity and antitumor immunity. Using CD11c-GSK-3β conditional knockout mice in which GSK-3β is genetically deleted in CD11c-expressing DCs, we surprisingly found that the deletion of GSK-3β in DCs resulted in increased antitumor immunity, which contradicted our initial expectation of reduced antitumor immunity due to the presumed upregulation of β-catenin in DCs.
View Article and Find Full Text PDFOsteoporotic fractures have become a common public health problem and are usually accompanied by chronic pain. Mg and Mg-based alloys are considered the next-generation orthopedic implants for their excellent osteogenic inductivity, biocompatibility, and biodegradability. However, Mg-based alloy can initiate aberrant activation of osteoclasts and modulate sensory innervation into bone callus resulting in postoperative pain at the sequential stage of osteoporotic fracture healing.
View Article and Find Full Text PDFIn the development of chronic liver disease, the hepatic stellate cell (HSC) plays a pivotal role in increasing intrahepatic vascular resistance (IHVR) and inducing portal hypertension (PH) in cirrhosis. Our research demonstrated that HSC contraction, prompted by angiotensin II (Ang II), significantly contributed to the elevation of type I collagen (COL1A1) expression. This increase was intimately associated with enhanced cell tension and YAP nuclear translocation, mediated through α-smooth muscle actin (α-SMA) expression, microfilaments (MF) polymerization, and stress fibers (SF) assembly.
View Article and Find Full Text PDFRecent studies have demonstrated that β-catenin in dendritic cells (DCs) serves as a key mediator in promoting both CD4 and CD8 T cell tolerance, although the mechanisms underlying how β-catenin exerts its functions remain incompletely understood. Here, we report that activation of β-catenin leads to the up-regulation of inhibitory molecule T-cell immunoglobulin and mucin domain 3 (Tim-3) in type 1 conventional DCs (cDC1s). Using a cDC1-targeted vaccine model with anti-DEC-205 engineered to express the melanoma antigen human gp100 (anti-DEC-205-hgp100), we demonstrated that CD11c-β-catenin mice exhibited impaired cross-priming and memory responses of gp100-specific CD8 T (Pmel-1) cells upon immunization with anti-DEC-205-hgp100.
View Article and Find Full Text PDFAge-related osteoporosis is characterized by an imbalance between osteogenic and adipogenic differentiation in bone mesenchymal stem cells (BMSCs). Forkhead box O 3 (FoxO3) transcription factor is involved in lifespan and cell differentiation. In this study, we explore whether FoxO3 regulates age-related bone loss and marrow fat accumulation.
View Article and Find Full Text PDFVoltage imaging enables high-throughput investigation of neuronal activity, yet its utility is often constrained by a low signal-to-noise ratio (SNR). Conventional denoising algorithms, such as those based on matrix factorization, impose limiting assumptions about the noise process and the spatiotemporal structure of the signal. While deep learning based denoising techniques offer greater adaptability, existing approaches fail to fully exploit the fast temporal dynamics and unique short- and long-range dependencies within voltage imaging datasets.
View Article and Find Full Text PDFObjectives: To evaluate the efficacy and safety of PTES for surgical treatment of lumbar degenerative disease (LDD) including lumbar disc herniation, lateral recess stenosis, intervertebral foraminal stenosis and central spinal canal stenosis in elderly patients compared with MIS-TLIF.
Methods: From November 2016 to December 2018, 84 elderly patients (>70 years old) of single-level LDD with neurologic symptoms underwent the surgical treatment. 45 patients were treated using PTES under local anesthesia in group 1 and 39 patients treated using MIS-TLIF in group 2.
Objective: To evaluate the postoperative outcomes, safety and feasibility of percutaneous transforaminal endoscopic surgery (PTES) for the treatment of lumbar degenerative disease (LDD) in the patients with underlying diseases.
Methods: From June 2017 to April 2019, PTES was performed to treat 226 patients of single-level LDD. According to clinical background, the patients were divided into two groups.
Background: Osteoarthritis (OA) is a prevalent degenerative articular disease for which there is no effective treatment. Progress has been made in mesenchymal stem cell (MSC)-based therapy in OA, and the efficacy has been demonstrated to be a result of paracrine exosomes from MSCs. Decellularized extracellular matrix (dECM) provides an optimum microenvironment for the expansion of MSCs.
View Article and Find Full Text PDFEthnopharmacological Relevance: Dahuang Zhechong pill (DHZCP), a traditional Chinese medicine, was derived from the famous book Unk "Synopsis of Prescriptions of the Golden Chamber" during the Han dynasty. Owing to its ability to invigorate the circulation of blood in Chinese medicine, DHZCP is usually used for treating liver cirrhosis (LC) and hepatocellular carcinoma (HCC). Clinical application have shown that DHZCP exhibits satisfactory therapeutic effects in HCC adjuvant therapy; however, little is known about its underlying mechanisms.
View Article and Find Full Text PDFObjective: Percutaneous transforaminal endoscopic surgery (PTES) is a novel, minimally invasive technique used to treat lumbar degenerative diseases (LDDs). PTES under local anesthesia was performed to treat the culprit segment of LDDs predicted by radiologic images or clinical symptoms, and the efficacy, security, and feasibility were evaluated.
Methods: Eighty-seven cases of LDDs with nerve root symptoms, which were not consistent with lumbar degenerative levels and degrees on MRI and CT, were treated with PTES under local anesthesia in a day surgery ward from January 2015 to December 2019.
As the most potent professional antigen presenting cells, dendritic cells (DCs) have the ability to activate both naive CD4 and CD8 T cells. Recognized for their exceptional ability to cross-present exogenous antigens to prime naive antigen-specific CD8 T cells, DCs play a critical role in generating CD8 T cell immunity, as well as mediating CD8 T cell tolerance to tumor antigens. Despite the ability to potentiate host CD8 T cell-mediated anti-tumor immunity, current DC-based cancer vaccines have not yet achieved the promised success clinically with the exception of FDA-approved Provenge.
View Article and Find Full Text PDFBackground: Osteonecrosis of the femoral head (ONFH) is a common but intractable disease that appears to involve lipid metabolic disorders. Although numerous studies have demonstrated that high blood levels of low-density lipoprotein (LDL) are closely associated with ONFH, there is limited evidence to explain the pathological role of LDL. Pathological and in vitro studies were performed to investigate the role of disordered metabolism of LDL and oxidized LDL (ox-LDL) in the femoral head in the pathology of ONFH.
View Article and Find Full Text PDFTrigeminal neuralgia is a debilitating condition, and the pain easily spreads to other parts of the face. Here, we established a mouse model of partial transection of the infraorbital nerve (pT-ION) and found that the Connexin 36 (Cx36) inhibitor mefloquine caused greater alleviation of pT-ION-induced cold allodynia compared to the reduction of mechanical allodynia. Mefloquine reversed the pT-ION-induced upregulation of Cx36, glutamate receptor ionotropic kainate 2 (GluK2), transient receptor potential ankyrin 1 (TRPA1), and phosphorylated extracellular signal regulated kinase (p-ERK) in the trigeminal ganglion.
View Article and Find Full Text PDFBackground: Comprehensive molecular profiling of various cancers and other diseases has generated vast amounts of multi-omics data. Each type of -omics data corresponds to one feature space, such as gene expression, miRNA expression, DNA methylation, etc. Integrating multi-omics data can link different layers of molecular feature spaces and is crucial to elucidate molecular pathways underlying various diseases.
View Article and Find Full Text PDFDefining subtypes of complex diseases such as cancer and stratifying patient groups with the same disease but different subtypes for targeted treatments is important for personalized and precision medicine. Approaches that incorporate multi-omic data are more advantageous to those using only one data type for patient clustering and disease subtype discovery. However, it is challenging to integrate multi-omic data as they are heterogeneous and noisy.
View Article and Find Full Text PDFBackground: Lynch syndrome (LS) is the most common hereditary cause of colorectal cancer (CRC) and endometrial cancer (EC). Screening of all CRCs for LS is currently recommended, but screening of ECs is inconsistent. The objective of this study was to determine the added value of screening both CRC and EC tumors in the same population.
View Article and Find Full Text PDFReconstructing context-specific transcriptional regulatory network is crucial for deciphering principles of regulatory mechanisms underlying various conditions. Recently studies that reconstructed transcriptional networks have focused on individual organisms or cell types and relied on data repositories of context-free regulatory relationships. Here we present a comprehensive framework to systematically derive putative regulator-target pairs in any given context by integrating context-specific transcriptional profiling and public data repositories of gene regulatory networks.
View Article and Find Full Text PDFTo determine the correlation between BRAF genotype and MLH1 promoter methylation in a screening program for Lynch syndrome (LS), a universal screening program for LS was established in two medical centers. Tumors with abnormal MLH1 staining were evaluated for both BRAF V600E genotype and MLH1 promoter methylation. Tumors positive for both were considered sporadic, and genetic testing was recommended for all others.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
March 2018
Omic data analyses pose great informatics challenges. As an emerging subfield of bioinformatics, omics informatics focuses on analyzing multi-omic data efficiently and effectively, and is gaining momentum. There are two underlying trends in the expansion of omics informatics landscape: the explosion of scattered individual omics informatics tools with each of which focuses on a specific task in both single- and multi- omic settings, and the fast-evolving integrated software platforms such as workflow management systems that can assemble multiple tools into pipelines and streamline integrative analysis for complicated tasks.
View Article and Find Full Text PDFDetection of KRAS mutations in cancer tissues is immensely valuable for the identification of personalized genotype-based therapy. Here, we employed a double-stranded toehold-exchange probe, which is labeled with fluorescent molecules (FAM) and quenchers (Dabcyl), to detect KRAS mutations in cancer tissues. This probe was able to differentiate the intended mutation in a sample containing as little as 5% mutant alleles in a background of wild-type DNA.
View Article and Find Full Text PDFBackground: Lung adenocarcinoma has one of the poorest outcomes of any cancer worldwide, in part due to the lack of a reliable means of early detection. Long noncoding RNAs (lncRNAs) have been shown to be deregulated in some types of cancer; however, the contributions of lncRNAs to lung adenocarcinoma remain unknown.
Methods: We described the expression profile of lncRNAs in human lung adenocarcinoma at an early stage and the corresponding adjacent nontumorous tissues (NT) by microarray.
Introduction: The objective of the study was to develop a panel of microRNAs (miRNAs) as highly sensitive and specific biomarkers for lung cancer early detection.
Materials And Methods: The study contained 2 phases: first, preliminary marker selection based on previous reports on the serum of 24 early stage lung cancer patients and 24 healthy control subjects by TaqMan probe-based real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR); and second, validation of miRNA markers on 94 early stage lung cancer, 48 stage III to IV lung cancer, and 111 healthy control serum samples.
Results: A total of 3 miRNAs (miR-125a-5p, miR-25, and miR-126) were selected for further analysis in this study.