Fate determination of neural stem cells (NSCs) is crucial for cortex development and is closely linked to neurodevelopmental disorders when gene expression networks are disrupted. The transcriptional corepressor chromodomain Y-like (CDYL) is widely expressed across diverse cell populations within the human embryonic cortex. However, its precise role in cortical development remains unclear.
View Article and Find Full Text PDFComputed tomography (CT) scans and magnetic resonance imaging (MRI) are commonly utilized to detect brain gliomas and central nervous system inflammation diseases. However, there are instances where depending solely on medical imaging for a precise diagnosis may result in unsuitable medications or treatments. Pathological analysis is regarded as the definitive method for diagnosing brain gliomas or central nervous system inflammation diseases.
View Article and Find Full Text PDFSomatic mutations related to clonal hematopoiesis of indeterminate potential (CHIP) are risk factors for stroke. The impact of , the most mutated gene in CHIP, on clinical functional outcomes of acute ischemic stroke (AIS) remains unclear. In a well-characterized cohort of 8524 ischemic stroke patients, we demonstrated that -driven CHIP was significantly associated with neurological disability in these patients.
View Article and Find Full Text PDFIschemic stroke is a leading cause of death and disability worldwide, with an increasing trend and tendency for onset at a younger age. China, in particular, bears a high burden of stroke cases. In recent years, the inflammatory response after stroke has become a research hotspot: understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.
View Article and Find Full Text PDFJOURNAL/nrgr/04.03/01300535-202410000-00024/figure1/v/2024-02-06T055622Z/r/image-tiff Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke.
View Article and Find Full Text PDFThe pathophysiology of autism spectrum disorders (ASDs) is causally linked to postsynaptic scaffolding proteins, as evidenced by numerous large-scale genomic studies [1, 2] and in vitro and in vivo neurobiological studies of mutations in animal models [3, 4]. However, due to the distinct phenotypic and genetic heterogeneity observed in ASD patients, individual mutation genes account for only a small proportion (<2%) of cases [1, 5]. Recently, a human genetic study revealed a correlation between de novo variants in FERM domain-containing-5 (FRMD5) and neurodevelopmental abnormalities [6].
View Article and Find Full Text PDFEpigenetic modifications are involved in the onset, development, and maintenance of pain; however, the precise epigenetic mechanism underlying pain regulation remains elusive. Here it is reported that the epigenetic factor chromodomain Y-like (CDYL) is crucial for pain processing. Selective knockout of CDYL in sensory neurons results in decreased neuronal excitability and nociception.
View Article and Find Full Text PDFBackground: Lowering low-density lipoprotein cholesterol (LDL-C) is crucial for secondary stroke prevention in stroke patients with preexisting cardiovascular diseases (CVD) or cerebrovascular diseases (CeVD). However, data on attainment of guideline-recommended LDL-C levels are lacking.
Methods: We analyzed data from the Chinese Stroke Center Alliance (CSCA) program for patients with ischemic stroke and transient ischemic attack (TIA) hospitalized between August 2015 and July 2019.
Neuropsychiatr Dis Treat
August 2021
Cell polarity is an intrinsic property of epithelial cells regulated by scaffold proteins. The CRB (crumbs) complex is known to play a predominant role in the dynamic cooperative network of polarity scaffold proteins. PATJ (PALS1-associated tight junction) is the core component in the CRB complex and has been highly conserved throughout evolution.
View Article and Find Full Text PDFThe CDY (chromodomain on the Y) proteins play an essential role in normal spermatogenesis and brain development. Dysregulation of their expression has been linked to male infertility and various neurological diseases. Like the chromodomains of HP1 and Polycomb, the CDY chromodomains also recognize the lysine-methylated ARKS motif embedded in histone and non-histone proteins.
View Article and Find Full Text PDFDendritic spines on the dendrites of pyramidal neurons are one of the most important components for excitatory synapses, where excitatory information exchanges and integrates. The defects of dendritic spine development have been closely connected with many nervous system diseases including autism, intellectual disability and so forth. Based on our previous studies, we here report a new functional signaling link between phospholipase D1 (PLD1) and protein kinase D1 (PKD1) in dendritic spine morphogenesis.
View Article and Find Full Text PDFDuring brain development, the correct migration of newborn neurons is one of the determinants of circuit formation, and neuronal migration defects may lead to neurological and psychiatric disorders. The molecular mechanisms underlying neuronal migration and related disorders are poorly understood. Here, we report that Chromodomain Y-like (CDYL) is critical for neuronal migration in mice.
View Article and Find Full Text PDF