Objectives: This study aims to investigate the primary target and potential mechanism of mangiferin (MF) in treating oral submucous fibrosis (OSF) through Gene Expression Omnibus (GEO) database chip mining, network pharmacology, and molecular docking techniques.
Methods: Potential therapeutic targets for OSF were identified using GEO chip data. The potential targets of MF were predicted, and disease-related targets for OSF were collected from databases.
The RNA-binding metabolic enzyme LTA4H is a novel target for cancer chemoprevention and chemotherapy. Recent research shows that the increased expression of LTA4H in laryngeal squamous cell carcinoma (LSCC) promotes tumor proliferation, migration, and metastasis. However, its mechanism remains unclear.
View Article and Find Full Text PDFAiming to bypass the inability to directly observe the evolution process of rock internal deformation and fracture, this paper proposes that rock samples with different inclination angles can be analyzed from the standpoint of energy, using the bond-base peridynamic theory and the PMB model of brittle materials, combined with laboratory experiments. The whole process of shearing is analyzed, and the LAMMPS software is used to simulate the internal energy change of rock-like materials under shear conditions, while the damage evolution law of samples with different dip angles is studied from macro and micro perspectives. The result shows that prefabricated cracks and the inclination of cracks are important factors for specimen damage, a finding that has important theoretical value for rock mechanics research.
View Article and Find Full Text PDFAnti-lipopolysaccharide factors (ALFs) are small basic proteins that exhibit broad-spectrum antiviral properties and antibacterial activity. In this research, we cloned and studied two Eriocheir hepuensis ALFs, EhALF2 and EhALF3. The results showed that the open reading frame lengths of EhALF2 and EhALF3 were 363 and 372 bp, encoding 120 and 123 amino acids, respectively.
View Article and Find Full Text PDFSuperoxide dismutase (SOD) can effectively eliminate of excess ROS, which causes oxidative damage to lipids, proteins, and DNA. In this study, we cloned the CuZn-SOD, cMn-SOD1, and cMn-SOD2 genes in Eriocheir hepuensis, and found that the coding sequence (CDS) lengths were 627 bp, 861 bp and 1062 bp, which encoded 208, 286, and 353 amino acids, respectively. Phylogenetic analysis indicated that all SOD genes were evolutionarily conserved, while cMn-SOD2 had an extra gap (67 amino acids) in the conserved domain compared with cMn-SOD1 without huge changes in the tertiary structure of the conserved domain, suggesting that cMn-SOD2 may be a duplicate of cMn-SOD1.
View Article and Find Full Text PDF