Dysregulated protein synthesis is thought to be a core phenotype of fragile X syndrome (FXS). In a mouse model (Fmr1 knockout (KO)) of FXS, rates of cerebral protein synthesis (rCPS) are increased in selective brain regions. We hypothesized that rCPS are also increased in FXS subjects.
View Article and Find Full Text PDFWe report regional rates of cerebral protein synthesis (rCPS) in 10 healthy young males, each studied under two conditions: awake and anesthetized with propofol. We used the quantitative L-[1-(11)C]leucine positron emission tomography (PET) method to measure rCPS. The method accounts for the fraction (lambda) of unlabeled leucine in the precursor pool for protein synthesis that is derived from arterial plasma; the remainder comes from proteolysis of tissue proteins.
View Article and Find Full Text PDFWe report regional rates of cerebral protein synthesis (rCPS) measured with the fully quantitative L-[1-(11)C]leucine positron emission tomography (PET) method. The method accounts for the fraction (lambda) of unlabeled amino acids in the precursor pool for protein synthesis derived from arterial plasma; the remainder (1-lambda) comes from tissue proteolysis. We determined rCPS and lambda in 18 regions and whole brain in 10 healthy men (21 to 24 years).
View Article and Find Full Text PDFWe have previously shown by direct comparison with autoradiographic and biochemical measurements that the L-[1-(11)C]leucine positron emission tomography method provides accurate determinations of regional rates of cerebral protein synthesis (rCPS) and the fraction (lambda) of unlabeled leucine in the precursor pool for protein synthesis derived from arterial plasma. In this study, we examine sensitivity of the method to detect changes in lambda and stability of the method to measure rCPS in the face of these changes. We studied four isoflurane-anesthetized monkeys dynamically scanned with the high resolution research tomograph under control and mild hyperphenylalaninemic conditions.
View Article and Find Full Text PDF