Publications by authors named "Tianhua Xiao"

Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).

View Article and Find Full Text PDF

Methicillin-resistant (MRSA) infection is a pressing clinical issue that impedes wound healing. Pro-inflammatory M1 macrophages is required to clear bacteria and recruit various cell types during the initial phase of wound healing, but timing of this process is crucial. Herein, a microenvironment-responsive nanofibrous dressing capable of timely macrophage phenotype transition is constructed by coating copper ions (Cu)-polydopamine (PDA) networks on poly (ε-caprolactone) fiber (PCL-fiber) membrane.

View Article and Find Full Text PDF

Insufficient vascularization is a major challenge in the repair of critical-sized bone defects. Deferoxamine (DFO) has been reported to play a potential role in promoting the formation of H-type blood vessels, a specialized vascular subtype with coupled angiogenesis and osteogenesis. However, whether DFO promotes the expression of H-type vessels in critical femoral defects with complete periosteal damage remains unknown.

View Article and Find Full Text PDF

Polycaprolactone (PCL) nanofibers have become an ideal material for bone tissue engineering due to a series of advantages. Considering the clinical treatment of bone defects, in addition to meeting the golden standard, PCL based nanofibers also need to be multifunctional to anti-inflammatory, antibacterial properties, and enhance the bone regeneration and repair. Herein, we successfully developed the multifunctional PCL/LIG/ZIF-8 composite nanofibers by loading ZIF-8 on electrospun PCL/lignin (PCL/LIG) nanofibers.

View Article and Find Full Text PDF

Polyetheretherketone (PEEK) is a biocompatible polymer, but its clinical application is largely limited due to its inert surface. To solve this problem, a multifunctional PEEK implant is urgently fabricated. In this work, a dual-metal-organic framework (Zn-Mg-MOF74) coating is bonded to PEEK using a mussel-inspired polydopamine interlayer to prepare the coating, and then, dexamethasone (DEX) is loaded on the coating surface.

View Article and Find Full Text PDF

Generally, the efficiency of water purification can be greatly increased by a high-flux membrane separation technology. One major challenge in the application of this technology is to achieve high removal efficacy of target pollutants with elevated water flux. Here we report a novel self-assembled composite by depositing two-dimensional MXene nanosheets on a commercialized mixed cellulose ester filter (as designated as MCM).

View Article and Find Full Text PDF

CO has been regarded as one of the most promising blowing agents for polystyrene (PS) foam due to its non-flammability, low price, nontoxicity, and eco-friendliness. However, the low solubility and fast diffusivity of CO in PS hinder its potential applications. In this study, an attapulgite (ATP)/polypyrrole (PPy) nanocomposite was developed using the in situ polymerization method to generate the hierarchical cell texture for the PS foam based on the supercritical CO foaming.

View Article and Find Full Text PDF