ACS Appl Mater Interfaces
May 2017
Preparation of mechanically durable superwetting surfaces is imperative, yet challenging for the wide range of real applications where high durability is required. Mechanical wear on superwetting surfaces usually degrades weak roughness, leading to loss of functions. In this study, wear-resistant superhydrophilic/underwater superoleophobic and superhydrophobic surfaces are prepared by anchoring reinforced coatings via adhesive-swelling and adhesive-bonding processes, respectively.
View Article and Find Full Text PDFGenomic selection (GS) approaches, in combination with reproductive technologies, are revolutionizing the design and implementation of breeding programs in livestock species, particularly in cattle. GS leverages genomic readouts to provide estimates of breeding value early in the life of animals. However, the capacity of these approaches for improving genetic gain in breeding programs is limited by generation interval, the average age of an animal when replacement progeny are born.
View Article and Find Full Text PDFPre-implantation embryos produced by somatic cell nuclear transfer (SCNT) have varied developmental potentials. The majority of SCNT blastocysts do not develop to term, and the mechanisms inhibiting development are still largely unknown. Aggregation of cloned embryos has been attempted to compensate for the developmental deficiency of individual cloned embryos.
View Article and Find Full Text PDFReproductive efficiency using somatic cell nuclear transfer (SCNT) technology remains suboptimal. Of the various efforts to improve the efficiency, chromatin transfer (CT) and clone-clone aggregation (NTagg) have been reported to produce live cloned animals. To better understand the molecular mechanisms of somatic cell reprogramming during SCNT and assess the various SCNT methods on the molecular level, we performed gene expression analysis on bovine blastocysts produced via standard nuclear transfer (NT), CT, NTagg, in vitro fertilization (IVF), and artificial insemination (AI), as well as on somatic donor cells, using bovine genome arrays.
View Article and Find Full Text PDF