Background: The extremely harsh environment of the desert is changing dramatically every moment, and the rapid adaptive stress response in the short term requires enormous energy expenditure to mobilize widespread regulatory networks, which is all the more detrimental to the survival of the desert plants themselves. The dune reed, which has adapted to desert environments with complex and variable ecological factors, is an ideal type of plant for studying the molecular mechanisms by which Gramineae plants respond to combinatorial stress of the desert in their natural state. But so far, the data on the genetic resources of reeds is still scarce, therefore most of their research has focused on ecological and physiological studies.
View Article and Find Full Text PDF[This corrects the article on p. 1316 in vol. 8, PMID: 28798765.
View Article and Find Full Text PDFRice cytoplasmic APX2 is a pleiotropic protein, densely distributed around chloroplasts. It plays key roles in HO homeostasis and chloroplast protection, and is related to plant architecture and fertility regulation. Ascorbate peroxidases (APXs) catalyze the conversion of HO into HO.
View Article and Find Full Text PDFDehydrins (DHNs) as a member of late-embryogenesis-abundant (LEA) proteins are involved in plant abiotic stress tolerance. Two dehydrins PpDHNA and PpDHNC were previously characterized from the moss Physcomitrella patens, which has been suggested to be an ideal model plant to study stress tolerance due to its adaptability to extreme environment. In this study, functions of these two genes were analyzed by heterologous expressions in Arabidopsis.
View Article and Find Full Text PDFAfter a long-term adaptation to desert environment, the perennial aquatic plant has evolved a desert-dune ecotype. The desert-dune ecotype (DR) of showed significant differences in water activity and protein distribution compared to its sympatric swamp ecotype (SR). Many proteins that were located in the soluble fraction of SR translocated to the insoluble fraction of DR, suggesting that membrane-associated proteins were greatly reinforced in DR.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2015
Green vegetative tissues of the moss Physcomitrella patens possess a powerful ability to tolerate severe drought stress. Proteomics analysis have revealed that a large number of late embryogenesis abundant (LEA) proteins were key players in the drought tolerance of the photosynthetic tissues. PpLEA4-20, a member of the moss LEA protein family, was selected for further function study using an ectopic expression method in rice.
View Article and Find Full Text PDF