Although there is a growing interest in Fenton oxidation processes based on natural catalysts, the use of laterite soil to promote sequential adsorption/oxidation treatments of fluoroquinolone antibiotics has been scarcely investigated. In this work, the ability of an african laterite containing goethite and hematite to remove flumequine (FLU), used as a representative compound of fluoroquinolone antibiotics, was evaluated under dark and UVA irradiation. Batch experiments and liquid chromatography analyses showed that the presence of laterite can enhance FLU removal from heavily contaminated water through both sorption and oxidation reactions (up to 94% removal of 77 μmol L of FLU and 72% of mineralization).
View Article and Find Full Text PDFAlthough several emerging contaminants (e.g. fluoro(quinolones) (FQs)) have been simultaneously detected in environmental systems, there is very limited information on their elimination from contaminated waters in multi-component systems.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2010
Background, Aim, And Scope: In literature, the environmental applications of green rust (GR) have mainly been pointed out through the reduction of inorganic contaminants and the reductive dechlorination of chlorinated organics. However, reactions involving GR for the oxidation and mineralization of organic pollutants remain very scantly described. In this study, the ability of three synthetic Fe(II)-Fe(III) green rusts, GR(CO (3)(2-)), GR(SO(4)(2-)), and GR(Cl(-)), to promote Fenton-like reaction was examined by employing phenol as a model pollutant.
View Article and Find Full Text PDFIn this study, the reactivity of hydroxysulphate green rust (GR(SO(4)(2-))) toward reductive transformation, oxidative degradation and mineralization of organic compounds was evaluated using Methyl Red (MR) as model pollutant. The GR(SO(4)(2-)) was synthesized by co-precipitation method and characterized by X-ray diffraction (XRD), Mössbauer spectroscopy and Fourier Transform Infrared (FTIR) analyses. Reductive decolourization of MR solution occurred in the presence of GR(SO(4)(2-)), while no total organic carbon (TOC) decay was observed during the equilibration time.
View Article and Find Full Text PDF