In this article, capillary electrophoresis was applied to investigate the chiral recognition mechanism for the enantioseparation on a well-known second-generation photodynamic therapy drug of benzoporphyrin derivative monoacid ring A, that is, verteporfin. In our previous study, cholate salts have been studied as the chiral selectors, which can realize baseline separation of the four verteporfin isomers. Aiming to reveal the chiral recognition mechanism, the separation effect of several kinds of chiral selectors was discussed.
View Article and Find Full Text PDFWe selected two thermally matched silicate glasses with fair refractive index contrast and developed an asterisk-shaped all-solid microstructured optical fiber. The fiber presents a low, ultra-flat, and all-normal dispersion in a wide wavelength range, allowing for the generation of an octave-spanning coherent supercontinuum (SC) in a 20 dB dynamic range with 0.5 ps pump pulses at 1.
View Article and Find Full Text PDFLasing properties have been investigated for Yb(3+) doped glasses with similar emission cross sections (σ(emi)) and lifetime while possessing different Stark levels. Narrow Stark splitting of Yb(3+)-phosphate glass is responsible for severe heat generation, narrow emission band and much smaller σ(emi) at lasing wavelength, making Yb(3+)-phosphate glass unsuccessful to achieve laser output, whereas 1.166W cw laser was obtained in Yb(3+)-fluorophosphate (FP) glass with broader Stark splitting.
View Article and Find Full Text PDFMid-infrared supercontinuum generation (SCG) is mostly studied in fluoride glass fibers in which long fibers and high power pump sources are needed. Taking advantages of high nonlinearity and transparency, chalcogenide glass is also applied for SCG in mid-infrared region, where specific strategy is needed to compensate large normal material dispersion. We investigate multimaterial fibers (MMFs) combined with fluoride and chalcogenide glasses for SCG.
View Article and Find Full Text PDF