The study investigated the changes of nucleotides, succinic acid, and free amino acids amounts in yolk and the causes leading to the changes after pickling to uncover the fundamental umami component of preserved egg yolk. The findings demonstrated that while the contents of 5'-adenosine monophosphate (AMP), 5'-cytidine monophosphate (CMP), 5'-guanosine monophosphate (GMP), 5'-uridine monophosphate (UMP), and succinic acid increased after slightly decreasing aspartic acid (Asp) content in preserved egg yolk increased gradually. The contents of 5'-inosine monophosphate (IMP) and other free amino acids were gradually decreased.
View Article and Find Full Text PDFKCl and CaCl were used as partial substitutes for NaCl during pickling salted eggs process in this study. The effects on the physicochemical properties, microstructure, textural properties and sensory quality of the salted eggs were evaluated, while comparing with the 18% NaCl group (Na group). The 3% replacement of NaCl by KCl reduced the Na content (p < 0.
View Article and Find Full Text PDFThe material basis leading to the rich umami flavor of preserved egg yolk is poorly understood. This study used nano-high-performance liquid chromatography - tandem mass spectrometry (nano-HPLC-MS/MS) to isolate, identify, and screen umami peptides from preserved egg yolk. Five novel umami peptides-AGFMPLP, APYSGY, PPMF, SLSSLMK, and VAMNPVDHPH-were identified.
View Article and Find Full Text PDFIn this study, the improvement of gel properties and digestibility of the water-soluble polymer of tea polyphenol (TP)-egg white protein (TEP) under heat induction (HTEP), was studied. Results indicated that the particle size and turbidity of TEP increased with TP concentration, and the absolute value of ζ-potential decreased. After heat induction, the surface hydrophobicity of HTEP decreased with TP concentration, and the degree of protein aggregation increased.
View Article and Find Full Text PDFLarge uncertainties exist in carbon (C)-climate feedback in permafrost regions, partly due to an insufficient understanding of warming effects on nutrient availabilities and their subsequent impacts on vegetation C sequestration. Although a warming climate may promote a substantial release of soil C to the atmosphere, a warming-induced increase in soil nutrient availability may enhance plant productivity, thus offsetting C loss from microbial respiration. Here, we present evidence that the positive temperature effect on carbon dioxide (CO ) fluxes may be weakened by reduced plant nitrogen (N) and phosphorous (P) concentrations in a Tibetan permafrost ecosystem.
View Article and Find Full Text PDFAboveground litter inputs have been greatly altered by human disturbances and climate change, which have important effects on soil respiration. However, the knowledge of how soil respiration responds to altered litter inputs is limited in tropical and subtropical forests. We conducted an aboveground litterfall manipulation experiment in three successional forests in the subtropics to examine the soil respiration responses to different litter inputs from January 2010 to July 2012.
View Article and Find Full Text PDFAs atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied.
View Article and Find Full Text PDF