Stat Methods Med Res
January 2025
The difference between two proportions is the most important parameter in comparing two treatments based on independent two binomials and has garnered widespread application across various fields, particularly in clinical trials. There exists significant interest in devising optimal confidence intervals for the difference. Approximate intervals relying on asymptotic normality may lack reliability, thus calling for enhancements in exact confidence interval construction to bolster reliability and precision.
View Article and Find Full Text PDFSpatial cluster analyses of health events are useful for enabling targeted interventions. Spatial scan statistic is the stateof- the-art method for this kind of analysis and the Poisson Generalized Linear Model (GLM) approach to the spatial scan statistic can be used for count data for spatial cluster detection with covariate adjustment. However, its use for modelling is limited due to data over-dispersion.
View Article and Find Full Text PDFStat Methods Med Res
March 2024
The weighted sum of binomial proportions and the interaction effect are two important cases of the linear combination of binomial proportions. Existing confidence intervals for these two parameters are approximate. We apply the -function method to a given approximate interval and obtain an exact interval.
View Article and Find Full Text PDFCells continuously experience and respond to different physical forces that are used to regulate their physiology and functions. Our ability to measure these mechanical cues is essential for understanding the bases of various mechanosensing and mechanotransduction processes. While multiple strategies have been developed to study mechanical forces within two-dimensional (2D) cell culture monolayers, the force measurement at cell-cell junctions in real three-dimensional (3D) cell models is still pretty rare.
View Article and Find Full Text PDFStrain gradients widely exist in development and physiological activities. The directional movement of cells is essential for proper cell localization, and directional cell migration in responses to gradients of chemicals, rigidity, density, and topography of extracellular matrices have been well-established. However; it is unclear whether strain gradients imposed on cells are sufficient to drive directional cell migration.
View Article and Find Full Text PDFThe relative risk and odds ratio are widely used in many fields, including biomedical research, to compare two treatments. Extensive research has been done to infer the two parameters through approximate or exact confidence intervals. However, these intervals may be liberal or conservative.
View Article and Find Full Text PDFA monolayer of highly motile cells can establish long-range orientational order, which can be explained by hydrodynamic theory of active gels and fluids. However, it is less clear how cell shape changes and rearrangement are governed when the monolayer is in mechanical equilibrium states when cell motility diminishes. In this work, we report that rat embryonic fibroblasts (REF), when confined in circular mesoscale patterns on rigid substrates, can transition from the spindle shapes to more compact morphologies.
View Article and Find Full Text PDFCells are physically contacting with each other. Direct and precise quantification of forces at cell-cell junctions is still challenging. Herein, we have developed a DNA-based ratiometric fluorescent probe, termed DNAMeter, to quantify intercellular tensile forces.
View Article and Find Full Text PDFMechanical interactions between cells have been shown to play critical roles in regulating cell signaling and communications. However, the precise measurement of intercellular forces is still quite challenging, especially considering the complex environment at cell-cell junctions. In this study, we report a fluorescence lifetime-based approach to image and quantify intercellular molecular tensions.
View Article and Find Full Text PDFACS Biomater Sci Eng
August 2019
Fusion of cancer cells is thought to contribute to tumor development and drug resistance. The low frequency of cell fusion events and the instability of fused cells have hindered our ability to understand the molecular mechanisms that govern cell fusion. We have demonstrated that several breast cancer cell lines can fuse into multinucleated giant cells in vitro, and the initiation and longevity of fused cells can be regulated solely by biophysical factors.
View Article and Find Full Text PDFRecently, researchers have been attempting to control pluripotent stem cell fate or generate self-organized tissues from stem cells. Advances in bioengineering enable generation of organotypic structures, which capture the cellular components, spatial cell organization and even some functions of tissues or organs in development. However, only a few engineering tools have been utilized to regulate the formation and organization of spatially complex tissues derived from stem cells.
View Article and Find Full Text PDFRecent findings suggest that mechanical forces strongly influence wound repair and fibrosis across multiple organ systems. Traction force is vital to the characterization of cellular responses to mechanical stimuli. Using hydrogel-based traction force microscopy, a FRET-based tension sensor, or microengineered cantilevers, the magnitude of traction forces can be measured.
View Article and Find Full Text PDF