The mitochondrial unfolded protein response (UPR) is a molecular mechanism that maintains mitochondrial proteostasis under stress and is closely related to various metabolic diseases, such as type 2 diabetes (T2D). Similarly, the unfolded protein response of the endoplasmic reticulum (UPR) is responsible for maintaining proteomic stability in the endoplasmic reticulum (ER). Since the mitochondria and endoplasmic reticulum are the primary centers of energy metabolism and protein synthesis in cells, respectively, a synergistic mechanism must exist between UPR and UPR to cooperatively resist stresses such as hyperglycemia in T2D.
View Article and Find Full Text PDFCharacterization of the bacterial composition and functional repertoires of microbiome samples is the most common application of metagenomics. Although deep whole-metagenome shotgun sequencing (WMS) provides high taxonomic resolution, it is generally cost-prohibitive for large longitudinal investigations. Until now, 16S rRNA gene amplicon sequencing (16S) has been the most widely used approach and usually cooperates with WMS to achieve cost-efficiency.
View Article and Find Full Text PDFIn the burgeoning microbiome field, powerful sequencing approaches and accompanied bioanalytical methods have made tremendous contributions to the discoveries of breakthroughs, which favor to unravel the intimate interplay between gut microbiota and human health. The proper preservation of samples before being processed is essential to guarantee the authenticity and reliability of microbiome studies. Hence, the development of preservation methods is extremely important to hold samples eligible for the consequent analysis, especially population cohort-based investigations or those spanning species or geography, which frequently facing difficulties in suppling freezing conditions.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
December 2020
Metagenomic sequencing provides a powerful tool for microbial research. However, traditional experimental DNA extraction process will inevitably mix with environmental microorganisms which float in the air. It is still unclear whether the mixed environmental microbial DNA will heavily affect the metagenomic results of samples with extremely low microbial content.
View Article and Find Full Text PDFFront Mol Neurosci
October 2016
Transcription factor 4 (TCF4) is found to be associated with schizophrenia. TCF4 mutations also cause Pitt-Hopkins Syndrome, a neurodevelopmental disorder associated with severe mental retardation. However, the function of TCF4 during brain development remains unclear.
View Article and Find Full Text PDFBackground: Loss of function mutations in RAB18, has been identified in patients with the human neurological and developmental disorder Warburg Micro syndrome. However, the function of RAB18 in brain remains unknown.
Results: In this study, we report that RAB18 is a critical regulator of neuronal migration and morphogenesis.
Biochem Biophys Res Commun
January 2016
The expression change of cellular senescence-associated genes is underlying the genetic foundation of cellular senescence. Using a suppressive subtractive hybridization system, we identified CSIG (cellular senescence-inhibited gene protein; RSL1D1) as a novel senescence-associated gene. CSIG is implicated in various process including cell cycle regulation, apoptosis, and tumor metastasis.
View Article and Find Full Text PDFAbnormalities during brain development are tightly linked several psychiatric disorders. Mutations in NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2) are responsible for schizophrenia, bipolar disorder and Parkinson׳s disease. However, the function of NDUFV2 during brain development remains unclear.
View Article and Find Full Text PDFCellular senescence-inhibited gene (CSIG) protein significantly prolongs the progression of replicative senescence, but its role in tumorigenesis is unclear. To reveal the role of CSIG in HCC, we determined its expression in HCC tissues and surrounding tissues and its functions in tumor cell proliferation in vitro and in vivo. CSIG protein was overexpressed in 86.
View Article and Find Full Text PDFThe retinoblastoma (Rb) protein mediates heterochromatin formation at the promoters of E2 transcription factor 1 (E2F1) target genes, such as proliferating cell nuclear antigen and cyclin A2 (CCNA2), and represses these genes during cellular senescence. However, the selectivity of Rb recruitment is still not well understood. Here, we demonstrate that a senescence-associated gene is a direct target of E2F1 and is also repressed by heterochromatin in senescent cells.
View Article and Find Full Text PDFWW domain-containing E3 ubiquitin protein ligase 1 (WWP1) plays an important role in the proliferation of tumor cells and the lifespan of Caenorhabditis elegans. However, the role of WWP1 in cellular senescence is still unknown. Here, we show that the expression patterns of p27(Kip1) and WWP1 are inversely correlated during cellular senescence.
View Article and Find Full Text PDFLsh, a protein related to the SNF2 family of chromatin-remodeling ATPases, is a major epigenetic regulator that is essential for DNA methylation and histone acetylation at repetitive elements. Lsh represses endogenous p16(INK4a) expression by recruiting HDAC to the p16(INK4a) promoter, which in turn delays cell senescence. However, the molecular mechanisms that govern loss of Lsh expression during cellular senescence have yet to be elucidated.
View Article and Find Full Text PDF