Proteins can self-assemble into a range of nanostructures as a result of molecular interactions. Amyloid nanofibrils, as one of them, were first discovered with regard to the relevance of neurodegenerative diseases but now have been exploited as building blocks to generate multiscale materials with designed functions for versatile applications. This review interconnects the mechanism of amyloid fibrillation, the current approaches to synthesizing amyloid protein-based materials, and the application in bioplastic development.
View Article and Find Full Text PDFMODFLOW is one of the most popular groundwater simulation tools available; however, the development of lake modules that can be coupled with MODFLOW is lacking apart from the LAK3 package. This study proposes a new approach for simulating lake-groundwater interaction under steady-state flow, referred to as the sloping lakebed method (SLM). In this new approach, discretization of the lakebed in the vertical direction is independent of the spatial discretization of the aquifer system, which can potentially solve the problem that the lake and groundwater are usually simulated at different scales.
View Article and Find Full Text PDFA novel metal matrix composite based on the NbMoCrTiAl high entropy alloy (HEA) was designed by the in-situ formation method. The microstructure, phase evolution, and compression mechanical properties at room temperature of the composite are investigated in detail. The results confirmed that the composite was primarily composed of body-centered cubic solid solution with a small amount of titanium carbides and alumina.
View Article and Find Full Text PDF