Publications by authors named "Tianbing Song"

The rise of wearable electronics demands flexible energy storage solutions like flexible fiber energy storage devices (FESDs), known for their flexibility and portability. However, it remains difficult for existing fabrication methods (typically, finite-coating, thermal-drawing, and solution-extrusion) to simultaneously achieve desirable electrochemical performances and fast production of FESDs. Here, a new scalable coating-extrusion method is developed, utilizing a novel extruded spinneret with tapered apertures to create dual pressure zones.

View Article and Find Full Text PDF

Ultrathin lithium (Li) metal wires with tunable capacities have great promise for precise prelithiation of fiber anodes and high-energy-density Li-based fiber batteries. However, the application of Li metal in fiber batteries faces great challenges due to its mechanical fragility and the resulting limited micro-dimension manufacturing capability. These challenges impede the production of ultrathin Li wires with adjustable Li contents to match the capacities of Li-based fiber batteries.

View Article and Find Full Text PDF

Flexible batteries such as scalable fiber-shaped lithium-ion batteries (FLIBs) hold great potential for powering wearable electronics due to their excellent electrochemical performance, flexibility, and weavability. However, the use of organic liquid electrolytes raises serious safety concerns, including leakage and combustion hazards. In this study, we develop fire-resistant lithium cobalt oxide/graphite FLIBs by employing an in situ polymerized gel polymer electrolyte (GPE) incorporating 1,3,3,5,5-pentafluoro-1-ethoxy-cyclotriphosphazene (PFPN) as a flame retardant and triethylene glycol dimethacrylate (TEGDMA) as a crosslinker.

View Article and Find Full Text PDF

Fiber zinc-air batteries are explored as promising power systems for wearable and portable electronic devices due to their intrinsic safety and the use of ambient oxygen as cathode material. However, challenges such as limited zinc anode reversibility and sluggish cathode reaction kinetics result in poor cycling stability and low energy efficiency. To address these challenges, we design a polydopamine-based all-in-one gel electrolyte (PAGE) that simultaneously regulates the reversibility of zinc anodes and the kinetics of air cathodes through polydopamine interfacial and redox chemistry, respectively.

View Article and Find Full Text PDF

Lithium (Li) metal batteries are deemed as promising next-generation power solutions but are hindered by the uncontrolled dendrite growth and infinite volume change of Li anodes. The extensively studied 3D scaffolds as solutions generally lead to undesired "top-growth" of Li due to their high electrical conductivity and the lack of ion-transporting pathways. Here, by reducing electrical conductivity and increasing the ionic conductivity of the scaffold, the deposition spot of Li to the bottom of the scaffold can be regulated, thus resulting in a safe bottom-up plating mode of the Li and dendrite-free Li deposition.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (ZIBs) using the Zn metal anode have been considered as one of the next-generation commercial batteries with high security, robust capacity, and low price. However, parasitic reactions, notorious dendrites and limited lifespan still hamper their practical applications. Herein, an eco-friendly nitrogen-doped and sulfonated carbon dots (NSCDs) is designed as a multifunctional additive for the cheap aqueous ZnSO electrolyte, which can overcome the above difficulties effectively.

View Article and Find Full Text PDF

Objectives: [18F]9-fluoropropyl-(+)-dihydrotetrabenazine ([18F]-FP-DTBZ) positron emission tomography (PET) provides reliable information for the diagnosis of Parkinson's disease (PD). In this study, we proposed a multi-atlas-based [18F]-FP-DTBZ PET image segmentation method for PD quantification assessment.

Methods: A total of 99 subjects from Xuanwu Hospital of Capital Medical University were included in this study, and both brain PET and magnetic resonance (MR) scans were conducted.

View Article and Find Full Text PDF

Mn O is a promising cathode material for aqueous zinc ion batteries (ZIBs) which is a new type of low cost, eco-friendly, high security energy storage system, while those previously reported electrochemical capacities of Mn O are far from its theoretical value. In this work, Mn O nanoparticles and nitrogen-doped carbon dots (NCDs) are synthesized together through an in-situ hydrothermal route, and then calcined to be a nanocomposite in which Mn O nanoparticles are anchored on a nitrogen-doped carbon skeleton (designated as Mn O /NCDs). Although the carbon content is only 3.

View Article and Find Full Text PDF

Sodium-ion batteries have increasingly been considered as an attractive alternative to lithium-ion batteries for large-scale applications. High specific capacity and suitable working potential anode materials are one of the keys to search for future developments. Here, a novel and stable sodium titanate/carbon-black phosphorus (NTO/C-BP) hybrids are first fabricated as a promising anode material for advanced sodium-ion batteries.

View Article and Find Full Text PDF