Publications by authors named "Tiana Pelaia"

Background: Insulin-like growth factor (IGF)-1 plays a role in aging and cancer biology, with fasting known to reduce serum IGF-1 levels in human adults. However, the impact of ad libitum ketogenic diets (KDs) on IGF-1 levels remains unclear.

Methods: Adhering to PRISMA guidelines, we conducted a meta-analysis of human trials by systematically searching Ovid, PubMed, Scopus, and CENTRAL Libraries until June 2023.

View Article and Find Full Text PDF

Background: Insulin-like growth factor (IGF)-1 and its binding proteins are important in cancer growth, especially in prostate cancer. Observational studies suggest that protein restriction can lower IGF-1 levels. However, it is unclear whether an isocaloric protein-restricted diet affects IGF-1 and IGFBPs in men with prostate cancer.

View Article and Find Full Text PDF

Background: Viral respiratory tract infections are frequently complicated by secondary bacterial infections. This study aimed to use machine learning to predict the risk of bacterial superinfection in SARS-CoV-2-positive individuals.

Methods: In this prospective, multicentre, observational cohort study done in nine centres in six countries (Australia, Indonesia, Singapore, Italy, Czechia, and France) blood samples and RNA sequencing were used to develop a robust model of predicting secondary bacterial infections in the respiratory tract of patients with COVID-19.

View Article and Find Full Text PDF

This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2023. Other selected articles can be found online at  https://www.biomedcentral.

View Article and Find Full Text PDF

Human activity has now introduced novel chemicals into most aquatic ecosystems. Endocrine-disrupting compounds originating from plastic pollution and manufacture can have pronounced biological effects by disrupting hormone-mediated processes. Bisphenol A (BPA) is one of the most commonly produced endocrine-disrupting compounds, which interferes with signalling by a broad range of hormones.

View Article and Find Full Text PDF

Patients with preexisting metabolic disorders such as diabetes are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Mitochondrion, the very organelle that controls cellular metabolism, holds the key to understanding disease progression at the cellular level. Our current study aimed to understand how cellular metabolism contributes to COVID-19 outcomes.

View Article and Find Full Text PDF

Background: Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infected individuals display a wide spectrum of disease severity, as defined by the World Health Organization (WHO). One of the main factors underlying this heterogeneity is the host immune response, with severe COVID-19 often associated with a hyperinflammatory state.

View Article and Find Full Text PDF

Purpose: Robust biomarkers that predict disease outcomes amongst COVID-19 patients are necessary for both patient triage and resource prioritisation. Numerous candidate biomarkers have been proposed for COVID-19. However, at present, there is no consensus on the best diagnostic approach to predict outcomes in infected patients.

View Article and Find Full Text PDF