Publications by authors named "TianHong Dai"

Pseudomonas aeruginosa, a notable pathogen frequently associated with hospital-acquired infections, displays diverse intrinsic and acquired antibiotic resistance mechanisms, posing a significant challenge in infection management. Antimicrobial blue light (aBL) has been demonstrated as a potential alternative for treating P. aeruginosa infections.

View Article and Find Full Text PDF

Objective: In this study, we evaluated the effectiveness of antimicrobial blue light (aBL; 410 nm wavelength) against β-lactamase-carrying bacteria and the effect of aBL on the activity of β-lactamases.

Methods: Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae strains carrying β-lactamases as well as a purified β-lactamase enzymes were studied. β-lactamase activity was assessed using a chromogenic cephalosporin hydrolysis assay.

View Article and Find Full Text PDF

Antimicrobial strategies for musculoskeletal infections are typically first developed with in vitro models. The In Vitro Section of the 2023 Orthopedic Research Society Musculoskeletal Infection international consensus meeting (ICM) probed our state of knowledge of in vitro systems with respect to bacteria and biofilm phenotype, standards, in vitro activity, and the ability to predict in vivo efficacy. A subset of ICM delegates performed systematic reviews on 15 questions and made recommendations and assessment of the level of evidence that were then voted on by 72 ICM delegates.

View Article and Find Full Text PDF
Article Synopsis
  • Antimicrobial resistance has created a critical need for new treatment methods, and antimicrobial blue light (aBL) shows promise as a standalone therapy, despite its limited antimicrobial activity window.
  • The study investigates how aBL works and its potential to enhance the efficacy of antibiotics by increasing reactive oxygen species (ROS) production, which is known to contribute to the effectiveness of antibiotics.
  • Results indicate that aBL can effectively promote antibiotic activity against multidrug-resistant bacteria in a mouse model, particularly when used with chloramphenicol, suggesting it could be a valuable complementary treatment in fighting infections like those caused by Acinetobacter baumannii.
View Article and Find Full Text PDF

In recent years, with the increases in microorganisms that express a multitude of antimicrobial resistance (AMR) mechanisms, the threat of antimicrobial resistance in the global population has reached critical levels. The introduction of the COVID-19 pandemic has further contributed to the influx of infections caused by multidrug-resistant organisms (MDROs), which has placed significant pressure on healthcare systems. For over a century, the potential for light-based approaches targeted at combatting both cancer and infectious diseases has been proposed.

View Article and Find Full Text PDF

A metagenome contains all DNA sequences from an environmental sample, including viruses, bacteria, archaea, and eukaryotes. Since viruses are of huge abundance and have caused vast mortality and morbidity to human society in history as a type of major pathogens, detecting viruses from metagenomes plays a crucial role in analyzing the viral component of samples and is the very first step for clinical diagnosis. However, detecting viral fragments directly from the metagenomes is still a tough issue because of the existence of a huge number of short sequences.

View Article and Find Full Text PDF

Despite decades of efforts, state-of-the-art synthetic burn dressings to treat partial-thickness burns are still far from ideal. Current dressings adhere to the wound and necessitate debridement. This work describes the first "supramolecular hybrid hydrogel (SHH)" burn dressing that is biocompatible, self-healable, and on-demand dissoluble for easy and trauma-free removal, prepared by a simple, fast, and scalable method.

View Article and Find Full Text PDF

Antimicrobial blue light (aBL) offers efficacy and safety in treating infections. However, the bacterial targets for aBL are still poorly understood and may be dependent on bacterial species. Here, we investigated the biological targets of bacterial killing by aBL (λ = 410 nm) on three pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa.

View Article and Find Full Text PDF

is an invasive marine bacterium that causes a variety of serious infectious diseases. With the increasing multidrug-resistant variants, treatment of . infections is becoming more difficult.

View Article and Find Full Text PDF

Background: Lateral flow immunoassays (LFIAs) are being used worldwide for COVID-19 mass testing and antibody prevalence studies. Relatively simple to use and low cost, these tests can be self-administered at home, but rely on subjective interpretation of a test line by eye, risking false positives and false negatives. Here, we report on the development of ALFA (Automated Lateral Flow Analysis) to improve reported sensitivity and specificity.

View Article and Find Full Text PDF

Blue light (BL) has shown bactericidal effectiveness against methicillin-resistant Staphylococcus aureus (MRSA), one of the major clinical pathogens with antibiotic resistance. Bacteria likely respond to the oxidative stress induced by BL; however, the defensive response is still unclear. This study aimed to reveal the phenotypic change in MRSA after being exposed to 15 cycles of sub-lethal BL illumination.

View Article and Find Full Text PDF

Biophotonics is defined as the combination of biology and photonics (the physical science of the light). It is a general term for all techniques that deal with the interaction between biological tissues/cells and photons (light). Biophotonics offers a great variety of techniques that can facilitate the early detection of diseases and promote innovative theragnostic approaches.

View Article and Find Full Text PDF

Over the past decade, antimicrobial blue light (aBL) at 400 - 470 nm wavelength has demonstrated immense promise as an alternative approach for the treatment of multidrug-resistant infections. Since our last review was published in 2017, there have been numerous studies that have investigated aBL in terms of its, efficacy, safety, mechanism, and propensity for resistance development. In addition, researchers have looked at combinatorial approaches that exploit aBL and other traditional and non-traditional therapeutics.

View Article and Find Full Text PDF

Background: The purpose of this study was to compare the efficacy of blue light therapy (BLT) and 5% topical benzoyl peroxide (BPO) gel in combination with standard chlorhexidine (CHX) preparation in eradicating Cutibacterium acnes at the deltopectoral interval measured by positive, quantitative culture findings.

Methods: Adult male volunteers were randomized to 1 of 3 treatment groups: BPO, BLT, and BPO followed by BLT. Contralateral shoulders served as matched controls.

View Article and Find Full Text PDF

Increasing resistance to existing antibiotics by microbes is currently the biggest dilemma. Antimicrobial photodynamic therapy is a promising alternative for the treatment of multidrug-resistant infections. The aim of the current study was to fabricate graphene quantum dots loaded with curcumin as photosensitizer for improved antimicrobial photodynamic therapy.

View Article and Find Full Text PDF

Recently, there have been increasing numbers of publications illustrating the potential of light-based antimicrobial therapies to combat antimicrobial resistance. Several modalities, in particular, which have proven antimicrobial efficacy against a wide range of pathogenic microbes include: photodynamic therapy (PDT), ultraviolet light (UVA, UVB and UVC), and antimicrobial blue light (aBL). Using these techniques, microbial cells can be inactivated rapidly, either by inducing reactive oxygen species that are deleterious to the microbial cells (PDT, aBL and UVA) or by causing irreversible DNA damage via direct absorption (UVB and UVC).

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the use of antimicrobial blue light (aBL) and its combination with quinine hydrochloride (Q-HCL) to treat cutaneous mold infections caused by soil contamination following injuries.
  • - Researchers tested the effectiveness of these treatments on pathogenic molds, finding that while molds are somewhat tolerant to aBL, adding Q-HCL significantly enhances its effectiveness in causing damage to the mold cells.
  • - Results showed that both aBL and aBL + Q-HCL reduced the infection severity in a mouse model, suggesting that this combination treatment could be a promising new option for fighting mold infections.
View Article and Find Full Text PDF

As antimicrobial resistance continues to threaten the efficacy of conventional antibiotic therapy, it is paramount that we investigate innovative approaches to treat infectious diseases. In this study, we investigated the antimicrobial capabilities of the innovative combination of antimicrobial blue light (aBL; 405 nm wavelength) with the Pseudomonas aeruginosa pigment pyocyanin against methicillin resistant Staphylococcus aureus (MSRA. We explored the effects of different radiant exposures of aBL and increasing concentrations of pyocyanin against planktonic cells and those within biofilms.

View Article and Find Full Text PDF

Development of alternatives to antibiotics is one of the top priorities in the battle against multidrug-resistant (MDR) bacterial infections. Here, we report that two naturally occurring nonantibiotic modalities, blue light and phytochemical carvacrol, synergistically kill an array of bacteria including their planktonic forms, mature biofilms, and persisters, irrespective of their antibiotic susceptibility. Combination but not single treatment completely or substantially cured acute and established biofilm-associated and methicillin-resistant infections of full thickness murine third-degree burn wounds and rescued mice from lethal skin wound infections.

View Article and Find Full Text PDF

Pedestrian detection methods have been significantly improved with the development of deep convolutional neural networks. Nevertheless, detecting ismall-scaled pedestrians and occluded pedestrians remains a challenging problem. In this paper, we propose a pedestrian detection method with a couple-network to simultaneously address these two issues.

View Article and Find Full Text PDF

Resolution is an active process that protects the host damage from inflammation responses induced by infections. Simultaneously resolving inflammation and eliminating pathogens may be effective to treat infectious diseases, but it is required to deliver therapeutics to infectious sites. Here, we proposed a strategy to incorporate RvD1 and an antibiotic (ceftazidime) in human neutrophil-membrane derived nanovesicles that can specifically target inflamed vasculature for treatment of lung infection caused by P.

View Article and Find Full Text PDF