IEEE Trans Image Process
October 2024
Camouflaged object detection (COD) aims to identify the objects that seamlessly blend into the surrounding backgrounds. Due to the intrinsic similarity between the camouflaged objects and the background region, it is extremely challenging to precisely distinguish the camouflaged objects by existing approaches. In this paper, we propose a hierarchical graph interaction network termed HGINet for camouflaged object detection, which is capable of discovering imperceptible objects via effective graph interaction among the hierarchical tokenized features.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
December 2024
Recent camouflaged object detection (COD) attempts to segment objects visually blended into their surroundings, which is extremely complex and difficult in real-world scenarios. Apart from the high intrinsic similarity between camouflaged objects and their background, objects are usually diverse in scale, fuzzy in appearance, and even severely occluded. To this end, we propose an effective unified collaborative pyramid network that mimics human behavior when observing vague images and videos, i.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
October 2023
In this article, we provide a comprehensive study of a new task called collaborative camouflaged object detection (CoCOD), which aims to simultaneously detect camouflaged objects with the same properties from a group of relevant images. To this end, we meticulously construct the first large-scale dataset, termed CoCOD8K, which consists of 8528 high-quality and elaborately selected images with object mask annotations, covering five superclasses and 70 subclasses. The dataset spans a wide range of natural and artificial camouflage scenes with diverse object appearances and backgrounds, making it a very challenging dataset for CoCOD.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
November 2023
Generative (generalized) zero-shot learning [(G)ZSL] models aim to synthesize unseen class features by using only seen class feature and attribute pairs as training data. However, the generated fake unseen features tend to be dominated by the seen class features and thus classified as seen classes, which can lead to inferior performances under zero-shot learning (ZSL), and unbalanced results under generalized ZSL (GZSL). To address this challenge, we tailor a novel balanced semantic embedding generative network (BSeGN), which incorporates balanced semantic embedding learning into generative learning scenarios in the pursuit of unbiased GZSL.
View Article and Find Full Text PDF