Cellular senescence is closely related to DNA damage, proteasome inactivity, histone loss, epigenetic alterations, and tumorigenesis. The mammalian proteasome activator PA200 (also referred to as PSME4) or its yeast ortholog Blm10 promotes the acetylation-dependent degradation of the core histones during transcription, DNA repair, and spermatogenesis. According to recent studies, PA200 plays an important role in senescence, probably because of its role in promoting the degradation of the core histones.
View Article and Find Full Text PDFProcaspase 9 is the initiator caspase for apoptosis, but how its levels and activities are maintained remains unclear. The gigantic Inhibitor-of-Apoptosis Protein BIRC6/BRUCE/Apollon inhibits both apoptosis and autophagy by promoting ubiquitylation of proapoptotic factors and the key autophagic protein LC3, respectively. Here we show that BIRC6 forms an anti-parallel U-shaped dimer with multiple previously unannotated domains, including a ubiquitin-like domain, and the proapoptotic factor Smac/DIABLO binds BIRC6 in the central cavity.
View Article and Find Full Text PDFAutophagy is critical to acrosome biogenesis and mitochondrial quality control, but the underlying mechanisms remain unclear. The ubiquitin ligase Nrdp1/RNF41 promotes ubiquitination of the mitophagy-associated Parkin and interacts with the pro-autophagic protein SIP/CacyBP. Here, we report that global deletion of Nrdp1 leads to formation of the round-headed sperm and male infertility by disrupting autophagy.
View Article and Find Full Text PDFCurr Genomics
December 2021
Background: Histones are basic elements of the chromatin and are critical to controlling chromatin structure and transcription. The proteasome activator PA200 promotes the acetylation-dependent proteasomal degradation of the core histones during spermatogenesis, DNA repair, transcription, and cellular aging and maintains the stability of histone marks.
Objective: The study aimed to explore whether the yeast ortholog of PA200, Blm10, promotes degradation of the core histones during transcription and regulates transcription especially during aging.
The epigenetic inheritance relies on stability of histone marks, but various diseases, including aging-related disorders, are usually associated with alterations of histone marks. Whether and how the proteasome is responsible for maintaining the histone marks during transcription and aging remain unclear. The core histones can be degraded by the atypical proteasome, which contains the proteasome activator PA200, in an acetylation-dependent manner during somatic DNA damage response and spermiogenesis.
View Article and Find Full Text PDFMeiosis, which produces haploid progeny, is critical to ensuring both faithful genome transmission and genetic diversity. Proteasomes play critical roles at various stages of spermatogenesis, including meiosis, but the underlying mechanisms remain unclear. The atypical proteasomes, which contain the activator PA200, catalyze the acetylation-dependent degradation of the core histones in elongated spermatids and DNA repair in somatic cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2020
Cellular aging is associated with the damage to DNA, decline in proteasome activity, loss of histones and alteration of epigenetic marks. The atypical proteasome with the activator PA200 in mammals or its ortholog Blm10 in yeast promotes the acetylation-dependent degradation of the core histones during DNA repair or spermiogenesis. We show here that loss of PA200 or Blm10 is the leading cause of the decline in proteasome activity during aging, the latter of which conversely induces the transcription of Blm10.
View Article and Find Full Text PDFBRUCE/Apollon is a membrane-associated inhibitor of apoptosis protein that is essential for viability and has ubiquitin-conjugating activity. On initiation of apoptosis, the ubiquitin ligase Nrdp1/RNF41 promotes proteasomal degradation of BRUCE. Here we demonstrate that BRUCE together with the proteasome activator PA28γ causes proteasomal degradation of LC3-I and thus inhibits autophagy.
View Article and Find Full Text PDFProteasomes are responsible for the turnover of most cellular proteins, and thus are critical to almost all cellular activities. A substrate entering the proteasome must first bind to a substrate receptor. Substrate receptors can be classified as ubiquitin receptors and non-ubiquitin receptors.
View Article and Find Full Text PDF