Publications by authors named "Tian-Sheng Chen"

Background: Severe burns can lead to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS) due to inflammation-immunity dysregulation. This study aimed to identify key immune-related molecules and potential drugs for immune regulation in severe burn treatment.

Method: Microarray datasets GSE77791 and GSE37069 were analyzed to identify immune-related differentially expressed genes (DEGs), enriched pathways and prognosis-related genes.

View Article and Find Full Text PDF

Background: Chinese medaka (Oryzias sinensis) is widely distributed in freshwater rivers in China. Similar to the medaka (Oryzias latipes), Chinese medaka has the characteristics of small size, rapid reproductive cycle, and strong adaptability, which makes it suitable as a model organism for studies in basic biology and environmental toxicology. Chinese medaka exhibits distinct sexual dimorphism.

View Article and Find Full Text PDF

The selective oxygenation of ubiquitous C(sp )-H bonds remains a highly sought-after method in both academia and the chemical industry for constructing functionalized organic molecules. However, it is extremely challenging to selectively oxidize a certain C(sp )-H bond to afford alcohols due to the presence of multiple C(sp )-H bonds with similar strength and steric environment in organic molecules, and the alcohol products being prone to further oxidation. Herein, we present a practical and cost-efficient electrochemical method for the highly selective monooxygenation of benzylic C(sp )-H bonds using continuous flow reactors.

View Article and Find Full Text PDF

The direct hydroxylation of arene C-H bonds is a highly sought-after transformation but remains an unsolved challenge due to the difficulty in efficient and regioselective C-H oxygenation and high reactivity of the phenolic products leading to overoxidation. Herein we report electrochemical C-H hydroxylation of arenes in continuous flow for the synthesis of phenols. The method is characterized by broad scope (compatible with arenes of diverse electronic properties), mild conditions without any catalysts or chemical oxidants, and excellent scalability as demonstrated by the continuous production of 1 mol (204 grams) of one of the phenol products.

View Article and Find Full Text PDF

Introduction: Blast injuries are complex types of physical trauma resulting from direct or indirect exposure to an explosion, which can be divided into four classes: primary, secondary, tertiary, and quaternary. Primary blast injury results in damage, principally, in gas-containing organs such as the lungs (blast lung injury, BLI). BLI is defined as radiological and clinical evidence of acute lung injury occurring within 12h of exposure to an explosion and not due to secondary or tertiary injury.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play significant roles in both embryonic hematopoiesis and hematological malignancy. Zebrafish miR-462-731 cluster is orthologous of miR-191-425 in human which regulates proliferation and tumorigenesis. In our previous work, miR-462-731 was found highly and ubiquitously expressed during early embryogenesis.

View Article and Find Full Text PDF

HIF prolyl hydroxylase 1 (PHD1) functions in prolyl hydroxylation on mammal hypoxia-inducible factors (HIF), important transcription factors involved in hypoxia, however the roles of Phd1 in fish remain unclear. In this study, the full-length cDNA and promoter sequences of blunt snout bream (Megalobrama amblycephala) phd1 gene were isolated by a modified RACE strategy. The phd1 cDNA was 2672 bp for encoding 481 amino acid residues.

View Article and Find Full Text PDF

Aims/hypothesis: Somatostatin secretion from islet delta cells plays an important role in regulating islet function and is tightly controlled by environmental changes. Activation of the adrenergic system promoted somatostatin secretion from islet delta cells; however, the role of the adrenergic system in regulating somatostatin content and transcription has not been defined. An imbalance between the somatostatin content and its secretion may cause dysfunctions in the islet delta cells.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) derived from human embryonic stem cells (ESCs) have been shown to secrete exosomes that are cardioprotective against myocardial ischemia reperfusion injury in a mouse model. To elucidate this cardioprotective mechanism, we have characterized the protein, nucleic acid, and lipid composition of MSC exosomes. Here we describe the isolation and analysis of RNA in MSC exosome.

View Article and Find Full Text PDF

Cardiovascular disease is a major target for many experimental stem cell-based therapies and mesenchymal stem cells (MSCs) are widely used in these therapies. Transplantation of MSCs to treat cardiac disease has always been predicated on the hypothesis that these cells would engraft, differentiate and replace damaged cardiac tissues. However, experimental or clinical observations so far have failed to demonstrate a therapeutically relevant level of transplanted MSC engraftment or differentiation.

View Article and Find Full Text PDF

Background: Exosomes or secreted bi-lipid vesicles from human ESC-derived mesenchymal stem cells (hESC-MSCs) have been shown to reduce myocardial ischemia/reperfusion injury in animal models. However, as hESC-MSCs are not infinitely expansible, large scale production of these exosomes would require replenishment of hESC-MSC through derivation from hESCs and incur recurring costs for testing and validation of each new batch. Our aim was therefore to investigate if MYC immortalization of hESC-MSC would circumvent this constraint without compromising the production of therapeutically efficacious exosomes.

View Article and Find Full Text PDF

To identify unique biochemical pathways in embryonic stem cell-derived insulin-producing cells as potential therapeutic targets to prevent or delay beta-cell dysfunction or death in diabetic patients, comparative genome-wide gene expression studies of recently derived mouse insulin-producing cell lines and their progenitor cell lines were performed using microarray technology. Differentially expressed genes were functionally clustered to identify important biochemical pathways in these insulin-producing cell lines. Biochemical or cellular assays were then performed to assess the relevance of these pathways to the biology of these cells.

View Article and Find Full Text PDF

Human ESC-derived mesenchymal stem cell (MSC)-conditioned medium (CM) was previously shown to mediate cardioprotection during myocardial ischemia/reperfusion injury through large complexes of 50-100 nm. Here we show that these MSCs secreted 50- to 100-nm particles. These particles could be visualized by electron microscopy and were shown to be phospholipid vesicles consisting of cholesterol, sphingomyelin, and phosphatidylcholine.

View Article and Find Full Text PDF

The therapeutic effects of mesenchymal stem cells (MSCs) transplantation are increasingly thought to be mediated by MSC secretion. We have previously demonstrated that human ESC-derived MSCs (hESC-MSCs) produce cardioprotective microparticles in pig model of myocardial ischemia/reperfusion (MI/R) injury. As the safety and availability of clinical grade human ESCs remain a concern, MSCs from fetal tissue sources were evaluated as alternatives.

View Article and Find Full Text PDF

Intercellular exchange of protein and RNA-containing microparticles is an increasingly important mode of cell-cell communication. Here we investigate if mesenchymal stem cells (MSCs) known for secreting therapeutic paracrine factors also secrete RNA-containing microparticles. We observed that human embryonic stem cell (hESC)-derived MSC conditioned medium contained small RNAs (less than 300 nt) encapsulated in cholesterol-rich phospholipid vesicles as evidenced by their RNase sensitivity only in the presence of a sodium dodecyl sulfate-based cell lysis buffer, phospholipase A2 and a chelator of cholesterol, cyclodextrin and the restoration of their lower than expected density by detergent or phospholipase A2 treatment.

View Article and Find Full Text PDF