Publications by authors named "Tian-Ming Lan"

Utilization of faeces has long been a popular approach for genetic and ecological studies of wildlife. However, the success of molecular marker genotyping and genome resequencing is often unpredictable due to insufficient enrichment of endogenous DNA in the total faecal DNA that is dominated by bacterial DNA. Here, we report a simple and cheap method named PEERS to predominantly lyse animal cells over bacteria by using sodium dodecyl sulphate so as to discharge endogenous DNA into liquid phase before bacterial DNA.

View Article and Find Full Text PDF

Trade in ivory from extant elephant species namely Asian elephant (Elephas maximus), African savanna elephant (Loxodonta africana) and African forest elephant (Loxodonta cyclotis) is regulated internationally, while the trade in ivory from extinct species of Elephantidae, including woolly mammoth, is unregulated. This distinction creates opportunity for laundering and trading elephant ivory as mammoth ivory. The existing morphological and molecular genetics methods do not reliably distinguish the source of ivory items that lack clear identification characteristics or for which the quality of extracted DNA cannot support amplification of large gene fragments.

View Article and Find Full Text PDF

The mammoths originated in warm and equatorial Africa and later colonized cold and high-latitude environments. Studies on nuclear genes suggest that woolly mammoth had evolved genetic variations involved in processes relevant to cold tolerance, including lipid metabolism and thermogenesis, and adaptation to extremely varied light and darkness cycles. The mitochondria is a major regulator of cellular energy metabolism, thus the mitogenome of mammoths may also exhibit adaptive evolution.

View Article and Find Full Text PDF

The taxonomical identification merely based on morphology is often difficult for ancient remains. Therefore, universal or specific PCR amplification followed by sequencing and BLAST (basic local alignment search tool) search has become the most frequently used genetic-based method for the species identification of biological samples, including ancient remains. However, it is challenging for these methods to process extremely ancient samples with severe DNA fragmentation and contamination.

View Article and Find Full Text PDF