While wavelength-dependent photodegradation of organic solar cells (OSCs) under visible light is typically discussed in terms of UV/blue light-activated phenomena, we recently demonstrated wavelength-dependent degradation rates up to 660 nm for PM6:Y6. In this study, we systematically investigated this phenomenon for a broad variety of devices based on different donor:acceptor combinations. We found that the spectral composition of the light used for degradation, tuned in a spectral range from 457 to 740 nm and under high irradiances of up to 30 suns, has a crucial influence on the device stability of almost all tested semiconductors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2021
Despite the remarkable progress achieved in recent years, organic photovoltaics (OPVs) still need work to approach the delicate balance between efficiency, stability, and cost. Herein, two fully non-fused electron acceptors, PTB4F and PTB4Cl, are developed via a two-step synthesis from single aromatic units. The introduction of a two-dimensional chain and halogenated terminals for these non-fused acceptors plays a synergistic role in optimizing their solid stacking and orientation, thus promoting an elongated exciton lifetime and fast charge-transfer rate in bulk heterojunction blends.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
Although promising progress has been made in near-infrared (NIR) electron acceptors for broadening photoresponse of optoelectronics, there are still strong needs for efficient NIR materials with low synthetic complexities. In this work, three simple NIR acceptors are developed with absorption up to 1000 nm and possessing the same dithiophene cores with varied heteroatom linkages to carbon (C) atom for W1, to silicon (Si) for W2, and to nitrogen (N) for W3. It is found that the tuning of only one atom for simple acceptors can surprisingly lead to a large difference in photoelectric properties and solid stacking, as well as the performance in optoelectronics.
View Article and Find Full Text PDF