J Comput Aided Mol Des
November 2015
Calcium-activated chloride channels (CaCCs) play vital roles in a variety of physiological processes. Transmembrane protein 16A (TMEM16A) has been confirmed as the molecular counterpart of CaCCs which greatly pushes the molecular insights of CaCCs forward. However, the detailed mechanism of Ca(2+) binding and activating the channel is still obscure.
View Article and Find Full Text PDFThe stochastic Eigen model proposed by Feng et al. (2007) (Journal of Theoretical Biology, 246, 28) showed that error threshold is no longer a phase transition point but a crossover region whose width depends on the strength of the random fluctuation in an environment. The underlying cause of this phenomenon has not yet been well examined.
View Article and Find Full Text PDFThe family of calcium-binding proteins (CaBPs) consists of dozens of members and contributes to all aspects of the cell's function, from homeostasis to learning and memory. However, the Ca²⁺-binding mechanism is still unclear for most of CaBPs. To identify the Ca²⁺-binding sites of CaBPs, this study presented a computational approach which combined the fragment homology modeling with molecular dynamics simulation.
View Article and Find Full Text PDF