Publications by authors named "Tian Yuzhen"

Article Synopsis
  • Citrus Huanglongbing (HLB), caused by the bacterium "Liberibacter asiaticus," is a serious threat to citrus crops and currently has no effective cure or known susceptibility genes in Citrus species.
  • We conducted a genome-wide analysis of the DnaJ gene family in various Citrus species, identifying 86 genes spread across nine chromosomes, and classifying them into six groups.
  • Our research found that some DnaJ genes are significantly more active in HLB-infected tissues and suggested that silencing a specific gene could reduce disease resistance, laying groundwork for future breeding of disease-resistant citrus varieties.
View Article and Find Full Text PDF

Morphine and other synthetic opioids are widely prescribed to treat pain. Prolonged morphine exposure can paradoxically enhance pain sensitivity in humans and nociceptive behavior in rodents. To better understand the molecular mechanisms underlying opioid-induced hyperalgesia, we investigated changes in miRNA composition of small extracellular vesicles (sEVs) from the serum of mice after a morphine treatment paradigm that induces hyperalgesia.

View Article and Find Full Text PDF

Current treatments for chronic pain have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs), or exosomes, to transport beneficial biomolecular cargo to aid pain resolution. Exosomes are 30-150 nm sEVs that can be beneficial or harmful depending on their source and cargo composition.

View Article and Find Full Text PDF

Modern plant breeding relies heavily on the deployment of susceptibility and resistance genes to defend crops against diseases. The expression of these genes is usually regulated by transcription factors including members of the AP2/ERF family. While these factors are a vital component of the plant immune response, little is known of their specific roles in defense against f.

View Article and Find Full Text PDF

Chronic pain is a significant public health issue. Current treatments have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs) to transport beneficial biomolecular cargo to aid pain resolution.

View Article and Find Full Text PDF

Banana is one of the most important fruits in the world due to its status as a major food source for more than 400 million people. f. sp.

View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of cholesterol within the arterial wall. Its progression can be monitored via magnetic resonance imaging (MRI). Ultrasmall Superparamagnetic Particles of Iron Oxide (USPIO) (<5 nm) have been employed as T1 contrast agents for MRI applications.

View Article and Find Full Text PDF
Article Synopsis
  • Leaf senescence in plants is influenced by factors like age and carbon starvation, with distinct molecular mechanisms for each.
  • Salicylic acid (SA) and the NPR1 protein are key players in advancing developmental leaf senescence, but their interaction with carbon starvation is not fully understood.
  • Research using Arabidopsis thaliana revealed that SA enhances carbon starvation-induced leaf senescence by inhibiting autophagy through NPR1, while NPR1 mutations delay this process and increase autophagic activity.
View Article and Find Full Text PDF

Outbreaks of infectious diseases pose significant threats to human life, and countries around the world need to implement more precise prevention and control measures to contain the spread of viruses. In this study, we propose a spatial-temporal diffusion model of infectious diseases under a discrete grid, based on the time series prediction of infectious diseases, to model the diffusion process of viruses in population. This model uses the estimated outbreak origin as the center of transmission, employing a tree-like structure of daily human travel to generalize the process of viral spread within the population.

View Article and Find Full Text PDF

Nerve injury outcomes might be predicted by examining small extracellular vesicles (sEVs) in circulation, as their biomolecular cargo facilitates cellular communication and can alter transcriptional state and behavior of recipient cells. We found that sEVs from the serum of spared nerve injury (SNI) model male mice had 7 differentially expressed miRNAs compared to sEVs from sham-operated control mice 4 weeks postsurgery. We investigated how these sEVs alter transcription in primary cortical microglia, a crucial mediator of neuropathic pain, using RNA sequencing.

View Article and Find Full Text PDF

An efficient and safe vaccine is expected to allow people to return to normal life as soon as possible. However, vaccines for new diseases are likely to be in short supply during the initial deployment due to narrow production capacity and logistics. There is an urgent need to optimize the allocation of limited vaccines to improve the population effectiveness of vaccination.

View Article and Find Full Text PDF

Background: With the spread of COVID-19, the time-series prediction of COVID-19 has become a research hotspot. Unlike previous epidemics, COVID-19 has a new pattern of long-time series, large fluctuations, and multiple peaks. Traditional dynamical models are limited to curves with short-time series, single peak, smoothness, and symmetry.

View Article and Find Full Text PDF

In Rosaceae, tandem duplication caused the drastic expansion of CNGC gene family Group I. The members MdCN11 and MdCN19 negatively regulate Valsa canker resistance. Apple (Malus domestica) and pear (Pyrus bretschneideri and P.

View Article and Find Full Text PDF

Small extracellular vesicles (sEVs) are 50-150 nm vesicles secreted by all cells and present in bodily fluids. sEVs transfer biomolecules such as RNA, proteins, and lipids from donor to acceptor cells, making them key signaling mediators between cells. In the central nervous system (CNS), sEVs can mediate intercellular signaling, including neuroimmune interactions.

View Article and Find Full Text PDF

Diabetes is a metabolic syndrome rooted in impaired insulin and/or glucagon secretory responses within the pancreatic islets of Langerhans (islets). Insulin secretion is primarily regulated by two key factors: glucose-mediated ATP production and G-protein coupled receptors (GPCRs) signaling. GPCR kinase 2 (GRK2), a key regulator of GPCRs, is reported to be downregulated in the pancreas of spontaneously obesogenic and diabetogenic mice (ob/ob).

View Article and Find Full Text PDF

Small extracellular vesicles (sEVs) derived from antigen-presenting cells such as macrophages can induce therapeutically relevant immune responses. Anti-inflammatory miRNAs are elevated in sEVs secreted by RAW 264.7 mouse macrophages after lipopolysaccharide (LPS) stimulation.

View Article and Find Full Text PDF

Biological sex influences inflammatory response, as there is a greater incidence of acute inflammation in men and chronic inflammation in women. Here, we report that acute inflammation is attenuated by X-inactive specific transcript (Xist), a female cell-specific nuclear long noncoding RNA crucial for X-chromosome inactivation. Lipopolysaccharide-mediated acute inflammation increased Xist levels in the cytoplasm of female mouse J774A.

View Article and Find Full Text PDF

To investigate the effect of evidence-based nursing (EBN) intervention on upper limb function in postoperative breast cancer patients undergoing radiotherapy.A total of 126 breast cancer patients who had received postoperative radiotherapy in the Union Hospital affiliated with Tongji Medical College, Huazhong University of Science and Technology from September 2017 to September 2018 were randomly divided into 2 groups, namely, experimental and control groups, with 63 cases in each group. Both the control and experimental groups received routine postoperative radiotherapy followed by traditional and EBN interventions, respectively.

View Article and Find Full Text PDF

Exosomes are 30-150 nm extracellular vesicles mediating intercellular communication. Disease states can alter exosome composition affecting the message carried and thereby, its functional impact. The objective of this study was to identify proteins present in these vesicles in a mouse model of neuropathic pain induced by spared nerve injury (SNI).

View Article and Find Full Text PDF

Background: Evidence is overwhelming for sex differences in pain, with women representing the majority of the chronic pain patient population. There is a need to explore novel avenues to elucidate this sex bias in the development of chronic inflammatory pain conditions. Complex regional pain syndrome (CRPS) is a chronic neuropathic pain disorder, and the incidence of CRPS is greater in women than in men by ~4:1.

View Article and Find Full Text PDF

Pathological pain is a common and debilitating condition that is often poorly managed. Central sensitization is an important mechanism underlying pathological pain. However, candidate molecules involved in central sensitization remain unclear.

View Article and Find Full Text PDF

ATP can activate a variety of pathways through P2 purinoreceptors, leading to neuroprotection and pathology in the CNS. Among all P2X receptors, the P2X7 receptor (P2X7R) is a well-defined therapeutic target for inflammatory and neuropathic pain. Activation of P2X7R can generate reactive oxygen species (ROS) in macrophages and microglia.

View Article and Find Full Text PDF

The images captured by an airborne range-gated imaging system are degraded by many factors, such as light scattering, noise, defocus of the optical system, atmospheric disturbances, platform vibrations, and so on. The characteristics of low illumination, few details, and high noise make the state-of-the-art restoration method fail. In this paper, we present a restoration method especially for range-gated imaging systems.

View Article and Find Full Text PDF

Background: Methyl-CpG-binding protein 2 (MeCP2), a protein with affinity for methylated cytosines, is crucial for neuronal development and function. MeCP2 regulates gene expression through activation, repression and chromatin remodeling. Mutations in MeCP2 cause Rett syndrome, and these patients display impaired nociception.

View Article and Find Full Text PDF