Publications by authors named "Tian Lian Huang"

Thermogenic adipose tissue, consisting of brown and beige fat, regulates nutrient utilization and energy metabolism. Human brown fat is relatively scarce and decreases with obesity and aging. Hence, inducing thermogenic differentiation of white fat offers an attractive way to enhance whole-body metabolic capacity.

View Article and Find Full Text PDF

Light is fundamental for biological life, with most mammals possessing light-sensing photoreceptors in various organs. Opsin3 is highly expressed in adipose tissue which has extensive communication with other organs, particularly with the brain through the sympathetic nervous system (SNS). Our study reveals a new light-triggered crosstalk between adipose tissue and the hypothalamus.

View Article and Find Full Text PDF

Obesity induces chronic inflammation resulting in insulin resistance and metabolic disorders. Cold exposure can improve insulin sensitivity in humans and rodents, but the mechanisms have not been fully elucidated. Here, we find that cold resolves obesity-induced inflammation and insulin resistance and improves glucose tolerance in diet-induced obese mice.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) and beige fat function in energy expenditure in part due to their role in thermoregulation, making these tissues attractive targets for treating obesity and metabolic disorders. While prolonged cold exposure promotes de novo recruitment of brown adipocytes, the exact sources of cold-induced thermogenic adipocytes are not completely understood. Here, we identify transient receptor potential cation channel subfamily V member 1 (Trpv1) vascular smooth muscle (VSM) cells as previously unidentified thermogenic adipocyte progenitors.

View Article and Find Full Text PDF

Brown and brown-like beige/brite adipocytes dissipate energy and have been proposed as therapeutic targets to combat metabolic disorders. However, the therapeutic effects of cell-based therapy in humans remain unclear. Here, we created human brown-like (HUMBLE) cells by engineering human white preadipocytes using CRISPR-Cas9-SAM-gRNA to activate endogenous uncoupling protein 1 expression.

View Article and Find Full Text PDF

Uncoupling protein-1 (UCP1) plays a central role in energy dissipation in brown adipose tissue (BAT). Using high-throughput library screening of secreted peptides, we identify two fibroblast growth factors (FGF), FGF6 and FGF9, as potent inducers of UCP1 expression in adipocytes and preadipocytes. Surprisingly, this occurs through a mechanism independent of adipogenesis and involves FGF receptor-3 (FGFR3), prostaglandin-E2 and interaction between estrogen receptor-related alpha, flightless-1 (FLII) and leucine-rich-repeat-(in FLII)-interacting-protein-1 as a regulatory complex for UCP1 transcription.

View Article and Find Full Text PDF

Opsin3 (Opn3) is a transmembrane heptahelical G protein-coupled receptor (GPCR) with the potential to produce a nonvisual photoreceptive effect. Interestingly, anatomical profiling of GPCRs reveals that Opn3 mRNA is highly expressed in adipose tissue. The photosensitive functions of Opn3 in mammals are poorly understood, and whether Opn3 has a role in fat is entirely unknown.

View Article and Find Full Text PDF

Distinct oxygenases and their oxylipin products have been shown to participate in thermogenesis by mediating physiological adaptations required to sustain body temperature. Since the role of the lipoxygenase (LOX) family in cold adaptation remains elusive, we aimed to investigate whether, and how, LOX activity is required for cold adaptation and to identify LOX-derived lipid mediators that could serve as putative cold mimetics with therapeutic potential to combat diabetes. By utilizing mass-spectrometry-based lipidomics in mice and humans, we demonstrated that cold and β3-adrenergic stimulation could promote the biosynthesis and release of 12-LOX metabolites from brown adipose tissue (BAT).

View Article and Find Full Text PDF

Thermogenic fat expends energy during cold for temperature homeostasis, and its activity regulates nutrient metabolism and insulin sensitivity. We measured cold-activated lipid landscapes in circulation and in adipose tissue by MS/MS shotgun lipidomics. We created an interactive online viewer to visualize the changes of specific lipid species in response to cold.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) and beige adipose tissue combust fuels for heat production in adult humans, and so constitute an appealing target for the treatment of metabolic disorders such as obesity, diabetes and hyperlipidemia. Cold exposure can enhance energy expenditure by activating BAT, and it has been shown to improve nutrient metabolism. These therapies, however, are time consuming and uncomfortable, demonstrating the need for pharmacological interventions.

View Article and Find Full Text PDF

Aims/hypothesis: Adipose tissue dysfunction is a prime risk factor for the development of metabolic disease. Bone morphogenetic proteins (BMPs) have previously been implicated in adipocyte formation. Here, we investigate the role of BMP signalling in adipose tissue health and systemic glucose homeostasis.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) dissipates chemical energy as heat and can counteract obesity. MicroRNAs are emerging as key regulators in development and disease. Combining microRNA and mRNA microarray profiling followed by bioinformatic analyses, we identified miR-455 as a new regulator of brown adipogenesis.

View Article and Find Full Text PDF

Targeting brown adipose tissue (BAT) content or activity has therapeutic potential for treating obesity and the metabolic syndrome by increasing energy expenditure. However, both inter- and intra-individual differences contribute to heterogeneity in human BAT and potentially to differential thermogenic capacity in human populations. Here we generated clones of brown and white preadipocytes from human neck fat and characterized their adipogenic and thermogenic differentiation.

View Article and Find Full Text PDF

Lung stem cells are instructed to produce lineage-specific progeny through unknown factors in their microenvironment. We used clonal 3D cocultures of endothelial cells and distal lung stem cells, bronchioalveolar stem cells (BASCs), to probe the instructive mechanisms. Single BASCs had bronchiolar and alveolar differentiation potential in lung endothelial cell cocultures.

View Article and Find Full Text PDF

Unlabelled: For brown adipose tissue (BAT) to be effective at consuming calories, its blood flow must increase enough to provide sufficient fuel to sustain energy expenditure and also transfer the heat created to avoid thermal injury. Here we used a combination of human and rodent models to assess changes in BAT blood flow and glucose utilization.

Methods: (99m)Tc-methoxyisobutylisonitrile (MIBI) SPECT (n = 7) and SPECT/CT (n = 74) scans done in adult humans for parathyroid imaging were reviewed for uptake in regions consistent with human BAT.

View Article and Find Full Text PDF

Maintenance of body temperature is essential for the survival of homeotherms. Brown adipose tissue (BAT) is a specialized fat tissue that is dedicated to thermoregulation. Owing to its remarkable capacity to dissipate stored energy and its demonstrated presence in adult humans, BAT holds great promise for the treatment of obesity and metabolic syndrome.

View Article and Find Full Text PDF

Aims: Brown adipose tissue dissipates chemical energy in the form of heat and regulates triglyceride and glucose metabolism in the body. Factors that regulate fatty acid uptake and oxidation in brown adipocytes have not yet been fully elucidated. Bone morphogenetic protein 7 (BMP7) is a growth factor capable of inducing brown fat mitochondrial biogenesis during differentiation from adipocyte progenitors.

View Article and Find Full Text PDF

Body weight is regulated by coordinating energy intake and energy expenditure. Transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) signaling has been shown to regulate energy balance in lower organisms, but whether a similar pathway exists in mammals is unknown. We have previously demonstrated that BMP7 can regulate brown adipogenesis and energy expenditure.

View Article and Find Full Text PDF

Brown adipose tissue plays an important role in obesity, insulin resistance, and diabetes. We have previously shown that the transition from brown preadipocytes to mature adipocytes is mediated in part by insulin receptor substrate (IRS)-1 and the cell cycle regulator protein necdin. In this study, we used pharmacological inhibitors and adenoviral dominant negative constructs to demonstrate that this transition involves IRS-1 activation of Ras and ERK1/2, resulting in phosphorylation of cAMP response element-binding protein (CREB) and suppression of necdin expression.

View Article and Find Full Text PDF

Brown fat is specialized for energy expenditure and has therefore been proposed to function as a defense against obesity. Despite recent advances in delineating the transcriptional regulation of brown adipocyte differentiation, cellular lineage specification and developmental cues specifying brown-fat cell fate remain poorly understood. In this study, we identify and isolate a subpopulation of adipogenic progenitors (Sca-1(+)/CD45(-)/Mac1(-); referred to as Sca-1(+) progenitor cells, ScaPCs) residing in murine brown fat, white fat, and skeletal muscle.

View Article and Find Full Text PDF

Both insulin and bone morphogenetic protein (BMP) signaling systems are important for adipocyte differentiation. Analysis of gene expression in BMP7-treated fibroblasts revealed a coordinated change in insulin signaling components by BMP7. To further investigate the cross talk between insulin and BMP signaling systems in brown adipogenesis, we examined the effect of BMP7 in insulin receptor substrate 1 (IRS-1)-deficient brown preadipocytes, which exhibit a severe defect in differentiation.

View Article and Find Full Text PDF

Adipose tissue is central to the regulation of energy balance. Two functionally different types of fat are present in mammals: white adipose tissue, the primary site of triglyceride storage, and brown adipose tissue, which is specialized in energy expenditure and can counteract obesity. Factors that specify the developmental fate and function of white and brown adipose tissue remain poorly understood.

View Article and Find Full Text PDF