Publications by authors named "Tian Hongqi"

Background: NRAS-mutant melanoma is an aggressive subtype with poor prognosis; however, there is no approved targeted therapy to date worldwide.

Methods: We conducted a multicenter, single-arm, phase II, pivotal registrational study that evaluated the efficacy and safety of the MEK inhibitor tunlametinib in patients with unresectable, stage III/IV, NRAS-mutant melanoma (NCT05217303). The primary endpoint was objective response rate (ORR) assessed by independent radiological review committee (IRRC) per Response Evaluation Criteria in Solid Tumors (RECIST) v1.

View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) has a poor prognosis and usually presents resistance against radiotherapy. MEK inhibitors have been proven to possess a radiosensitization effect. The compound KZ-001 as a particular MEK inhibitor is superior to the listed MEK inhibitor AZD6244.

View Article and Find Full Text PDF

Aberrant activation of RAS-RAF-MEK-ERK signaling pathway has been implicated in more than one-third of all malignancies. MEK inhibitors are promising therapeutic approaches to target this signaling pathway. Though four MEK inhibitors have been approved by FDA, these compounds possess either limited efficacy or unfavorable PK profiles with toxicity issues, hindering their broadly application in clinic.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a common malignant tumor with a high incidence and mortality worldwide. Preoperative chemoradiotherapy is a common treatment for patients with metastatic colorectal cancer (mCRC) as it reduces colostomy and local recurrence. The RAS (rat sarcoma)-RAF (extracellular signal-regulated kinase)-MEK (mitogen-activated protein kinase)-ERK (extracellular signal-regulated kinase) pathway regulates important cellular processes in the CRC.

View Article and Find Full Text PDF

Despite being a powerful weapon against cancer cells, cisplatin's therapeutic potential is hampered by numerous adverse reactions, including acute kidney injury (AKI). Compound 5 has 3-SH fragments at the end of the vertical short alkyl side chain, which is an ROS scavenger synthesized. In this study, we evaluated the protective effect of compound 5 on the kidney after cisplatin administration and its mechanism.

View Article and Find Full Text PDF

Malignant melanoma is an aggressive disease. Tunlametinib (HL-085) is a potent, selective, and orally bioavailable MEK1/2 inhibitor. The objective of this study was to determine the pharmacokinetics (PK) of tunlametinib and its main metabolite M8 in patients with -mutant melanoma following a single dose and multiple doses in a phase I safety and PK study.

View Article and Find Full Text PDF

Ionizing radiation (IR) can cause damage to the structure and function of salivary glands. Our research group independently synthesized the ROS scavenger, HL-003. The aim of this study was to explore the protective effects and underlying mechanisms of HL-003 on radiation-induced salivary gland injury.

View Article and Find Full Text PDF

Purpose: With the development of nuclear technology and radiotherapy, the risk of radiation injury has been increasing. Therefore, it is important to find an effective radiation-protective agent. In this study, we designed and synthesized a novel compound called compound , of which the radioprotective effect and mechanism were studied.

View Article and Find Full Text PDF

The risk of radiation damage has increased with the rapid development of nuclear technology and radiotherapy. Hence, research on radioprotective agents is of utmost importance. In the present study, a novel aminothiol compound 12, containing a linear alkylamino backbone and three terminal thiols, was synthesized.

View Article and Find Full Text PDF

As the potential risk of radiation exposure is increasing, radioprotectors studies are gaining importance. In this study, novel hybrid compounds containing edaravone analogue and 3-n-butylphthalide ring-opening derivatives were synthesized, and their radioprotective effects were evaluated. Among these, compound 10a displayed the highest radioprotective activity in IEC-6 and HFL-1 cells.

View Article and Find Full Text PDF

Oxidative stress plays a critical role in cerebral ischemia-reperfusion injury. We have previously developed a powerful antioxidant, HL-008. This study aimed to investigate the neuroprotective function of HL-008.

View Article and Find Full Text PDF

To develop anti-ischemic stroke drugs with higher blood-brain barrier (BBB) penetrating capability and neuroprotective activity, a series of hybrid compounds containing edaravone analogue and 3-n-butylphthalide (NBP) ring-opened derivatives were synthesized and biologically evaluated. Among them, compound 10a displayed the highest protective activity in SH-SY5Y cells against oxygen and glucose deprivation (OGD) and HO insults. Experiment results indicated that 10a could inhibit platelet aggregation via the synergistic action of the edaravone analogue and NBP, and its oral administration protected the rats against ischemia/reperfusion-induced brain injury.

View Article and Find Full Text PDF

Protecting the body from radiation damage is a huge medical challenge. Amifostine and curcumin are both effective radioprotectants, but their use has been greatly restricted due to various reasons including low bioavailability. Nanoscale drug delivery systems of poly(ethylene glycol)-poly(ε-caprolactone) copolymers can improve the bioavailability of drugs due to excellent biocompatibility, biodegradability, and long circulation characteristics.

View Article and Find Full Text PDF

Amifostine is a radioprotector with high efficacy but poor safety, short half-life, no oral formulation, and poor compliance, which limits its application. With the increasing risk of exposure to radiation, the development of new radioprotective agents is critical. We previously synthesized a new amifostine derivative, the small molecule compound HL-003.

View Article and Find Full Text PDF

Amifostine has been the only small molecule radio-protector approved by FDA for decades; however, the serious adverse effects limit its clinical use. To address the toxicity issues and maintain the good potency, a series of modified small polycysteine peptides had been prepared. Among them, compound 5 exhibited the highest radio-protective efficacy, the same as amifostine, but much better safety profile.

View Article and Find Full Text PDF

The purpose of this study was to develop a novel pH-sensitive hydrogel which was used to regulate the acute radiation syndrome (ARS). The hydrogel was fabricated by grafting polycaprolactone onto methacrylic acid copolymer (MAC-g-PCL). Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (H NMR) confirmed the obtaining of MAC-g-PCL hydrogel.

View Article and Find Full Text PDF

Feedback circuits are one of the major causes underlying tumor resistance. Thus, compounds that target one oncogenic pathway with simultaneously blocking its compensatory pathway will be of great value for cancer treatment. Here, we develop a new MEK inhibitor designated as KZ-02 that exhibits unexpectedly higher cytotoxicity than its starting compound AZD6244, a well-known MEK inhibitor, in colorectal cancer (CRC).

View Article and Find Full Text PDF

Acute renal injury has an incidence of 25%-30% in patients with tumors who are treated with cisplatin and in patients for whom no specific drugs are available for treatment. Amifostine is the only FDA-approved chemoprotective drug; however, its clinical application is limited because of side effects. The small-molecule antioxidant XH-003, an acute radiation syndrome- (ARS-) protective drug independently developed in our laboratory, with 100% intellectual property rights, overcomes the side effects of amifostine but retains its high efficacy.

View Article and Find Full Text PDF

The hematopoietic system is sensitive to radiation. In this research, new aryl sulfone derivatives (XH-201 and XH-202) containing a nitrogen heterocycle were designed and synthesized and their radio-protective efficacies with regard to the hematopoietic system were evaluated. XH-201 administration significantly increased the survival rate of mice after 8.

View Article and Find Full Text PDF

Radiation exposure poses a significant threat to public health, which can lead to acute hematopoietic system and intestinal system injuries due to their higher radiation sensitivity. Hence, antioxidants and thiol-reducing agents could have a potential protective effect against this complication. The dithiol compound 1,4-dithiothreitol (DTT) has been used in biochemistry, peptide/protein chemistry and clinical medicine.

View Article and Find Full Text PDF

Extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylate a variety of substrates that play key roles in promoting cell survival and proliferation. Many inhibitors, acting on upstream of the ERK pathway, exhibit excellent antitumor activity. However, drug-resistant tumour cells invariably emerge after their use due to the reactivation of ERK1/2 signalling.

View Article and Find Full Text PDF

Background: Developing a controllable drug delivery system is imperative and important to reduce side effects and enhance the therapeutic efficacy of drugs. Metal-organic frameworks (MOFs) an emerging class of hybrid porous materials built from metal ions or clusters bridged by organic linkers have attracted increasing attention in the recent years owing to the unique physical structures possessed, and the potential for vast applications. The superior properties of MOFs, such as well-defined pore aperture, tailorable composition and structure, tunable size, versatile functionality, high agent loading, and improved biocompatibility, have made them promising candidates as drug delivery hosts.

View Article and Find Full Text PDF

Radiation-induced intestinal injury is one of the major side effects in patients receiving radiation therapy. There is no specific treatment for radiation enteritis in the clinic. We designed and synthesized a new compound named XH-105, which is expected to cleave into polyphenol and aminothiol in vivo to mitigate radiation injury.

View Article and Find Full Text PDF

Mutations in RAS/RAF occur in large portion of malignancies and are associated with aggressive clinical behaviors and poor prognosis. Therefore, we developed a novel benzoxazole compound (KZ-001) as a highly potent and selective MEK 1/2 inhibitor. Our efforts were focused on enhancing the activity of the known MEK inhibitor AZD6244 and overcoming the shortcomings existing in current MEK inhibitors.

View Article and Find Full Text PDF

To overcome the side effects of and resistance to cisplatin, a variety of Pt(IV) prodrugs were designed and synthesized via different modifications including combination with lipid chains to increase hydrophobicity, conjugation with short peptide chains or nanoparticles to improve drug delivery, or addition of bioactive ligands to the axial positions of Pt(IV) complexes to exert dual-function effects. This review summarizes the recent progress in the development of Pt(IV) prodrugs conjugated with bioactive-targeting ligands, including histone deacetylase inhibitors, p53 agonists, alkylating agents, and nonsteroidal anti-inflammatory agents. Although Pt(IV) complexes that conjugated with bioactive ligands show satisfactory anticancer effects, none has been approved for clinical use.

View Article and Find Full Text PDF