Alternative splicing is the process of generating different mRNAs from the same primary transcript, which contributes to increase the transcriptome and proteome diversity. Abnormal splicing has been associated with the development of several diseases including cancer. Given that mutations and abnormal levels of the RIPK2 transcript and RIP-2 protein are frequent in tumors, and that RIP-2 modulates immune and inflammatory responses, we investigated alternative splicing events that result in partial deletions of the kinase domain at the N-terminus of RIP-2.
View Article and Find Full Text PDFThe complex evolution of genetic alterations in cancer that occurs is a selective process involving numerous factors and mechanisms. Chemotherapeutic agents that prevent the growth and spread of cancer cells induce selective pressure, leading to rapid artificial selection of resistant subclones. This rapid evolution is possible because antineoplastic drugs promote alterations in tumor‑cell metabolism, thus creating a bottleneck event.
View Article and Find Full Text PDFMetabolomics has proven to be an important omics approach to understand the molecular pathways underlying the tumour phenotype and to identify new clinically useful markers. The literature on cancer has illustrated the potential of this approach as a diagnostic and prognostic tool. The present study aimed to analyse the plasma metabolic profile of patients with oral squamous cell carcinoma (OSCC) and controls and to compare patients with metastatic and primary tumours at different stages and subsites using nuclear magnetic resonance and mass spectrometry.
View Article and Find Full Text PDFBackground: Folate is essential for DNA synthesis, repair, and methylation. Polymorphisms in genes associated with folate metabolism may alter these processes and, consequently, modulate cancer development.
Aim: We aimed to assess DNMT3B -149C/T (rs2424913), DNMT3B -283T/C (rs6087990), DNMT3B -579G/T (rs2424909), DHFR 19-pb ins/del (rs70991108), SHMT1 1420C/T (rs1979277), and TYMS 28-bp tandem repeat (rs34743033) polymorphisms with risk of head and neck cancer.
Background: Mammary cancer is the most prevalent type of cancer in female dogs. The main cause of mortality is the occurrence of metastasis. The metastatic process is complex and involves the Epithelial- Mesenchymal Transition (EMT), which can be activated by Transforming Growth Factor beta (TGF-β) and involves changes in cellular phenotype, as well as, in the expression of proteins such as E-cadherin, N-cadherin, vimentin and claudin-7.
View Article and Find Full Text PDFBackground: Breast cancer is a heterogeneous disease and is the leading cause of cancer-related deaths among women. Even after diagnosis, the prognosis cannot be concluded since patients can develop resistance to therapy, which favors tumor growth, invasion and metastasis. In recent years, research has focused on identifying significant markers that can be used to determine the prognosis.
View Article and Find Full Text PDFAims: Breast cancer represents the second most prevalent tumor-related cause of death among women. Although studies have already been published regarding the association between breast tumors and miRNAs, this field remains unclear. MicroRNAs (miRNAs) are defined as non-coding RNA molecules, and are known to be involved in cell pathways through the regulation of gene expression.
View Article and Find Full Text PDFPurpose: Changes in the circadian rhythm may contribute to the development of cancer and are correlated with the high risk of breast cancer (BC) in night workers. Melatonin is a hormone synthesized by the pineal gland at night in the absence of light. Levels of melatonin and the metabolite of oxidative metabolism AFMK (acetyl-N-formyl-5-methoxykynurenamine), are suggested as potential biomarkers of BC risk.
View Article and Find Full Text PDFFolate is an essential nutrient with important roles in the synthesis, repair, and DNA methylation. Polymorphisms in genes encoding enzymes involved in folate metabolism can change these processes and modulate cancer development. We investigated DNMT3B C46359T (rs2424913) and SHMT1 C1420T (rs1979277) polymorphisms related to folate pathway in head and neck cancer (HNC) risk and the association of the disease with gender, risk factors and clinical histopathological parameters.
View Article and Find Full Text PDF