Publications by authors named "Tiago P Peixoto"

The task of community detection, which aims to partition a network into clusters of nodes to summarize its large-scale structure, has spawned the development of many competing algorithms with varying objectives. Some community detection methods are inferential, explicitly deriving the clustering objective through a probabilistic generative model, while other methods are descriptive, dividing a network according to an objective motivated by a particular application, making it challenging to compare these methods on the same scale. Here we present a solution to this problem that associates any community detection objective, inferential or descriptive, with its corresponding implicit network generative model.

View Article and Find Full Text PDF

The number of network science applications across many different fields has been rapidly increasing. Surprisingly, the development of theory and domain-specific applications often occur in isolation, risking an effective disconnect between theoretical and methodological advances and the way network science is employed in practice. Here we address this risk constructively, discussing good practices to guarantee more successful applications and reproducible results.

View Article and Find Full Text PDF

We develop a method to infer community structure in directed networks where the groups are ordered in a latent one-dimensional hierarchy that determines the preferred edge direction. Our nonparametric Bayesian approach is based on a modification of the stochastic block model (SBM), which can take advantage of rank alignment and coherence to produce parsimonious descriptions of networks that combine ordered hierarchies with arbitrary mixing patterns between groups. Since our model also includes directed degree correction, we can use it to distinguish nonlocal hierarchical structure from local in- and out-degree imbalance-thus, removing a source of conflation present in most ranking methods.

View Article and Find Full Text PDF

We perform a systematic analysis of the quality of fit of the stochastic block model (SBM) for 275 empirical networks spanning a wide range of domains and orders of size magnitude. We employ posterior predictive model checking as a criterion to assess the quality of fit, which involves comparing networks generated by the inferred model with the empirical network, according to a set of network descriptors. We observe that the SBM is capable of providing an accurate description for the majority of networks considered, but falls short of saturating all modeling requirements.

View Article and Find Full Text PDF

We study the emerging large-scale structures in networks subject to selective pressures that simultaneously drive toward higher modularity and robustness against random failures. We construct maximum-entropy null models that isolate the effects of the joint optimization on the network structure from any kind of evolutionary dynamics. Our analysis reveals a rich phase diagram of optimized structures, composed of many combinations of modular, core-periphery, and bipartite patterns.

View Article and Find Full Text PDF

Empirical networks are often globally sparse, with a small average number of connections per node, when compared to the total size of the network. However, this sparsity tends not to be homogeneous, and networks can also be locally dense, for example, with a few nodes connecting to a large fraction of the rest of the network, or with small groups of nodes with a large probability of connections between them. Here we show how latent Poisson models that generate hidden multigraphs can be effective at capturing this density heterogeneity, while being more tractable mathematically than some of the alternatives that model simple graphs directly.

View Article and Find Full Text PDF

We present a Markov chain Monte Carlo scheme based on merges and splits of groups that is capable of efficiently sampling from the posterior distribution of network partitions, defined according to the stochastic block model (SBM). We demonstrate how schemes based on the move of single nodes between groups systematically fail at correctly sampling from the posterior distribution even on small networks, and how our merge-split approach behaves significantly better, and improves the mixing time of the Markov chain by several orders of magnitude in typical cases. We also show how the scheme can be straightforwardly extended to nested versions of the SBM, yielding asymptotically exact samples of hierarchical network partitions.

View Article and Find Full Text PDF

We present a scalable nonparametric Bayesian method to perform network reconstruction from observed functional behavior that at the same time infers the communities present in the network. We show that the joint reconstruction with community detection has a synergistic effect, where the edge correlations used to inform the existence of communities are also inherently used to improve the accuracy of the reconstruction which, in turn, can better inform the uncovering of communities. We illustrate the use of our method with observations arising from epidemic models and the Ising model, both on synthetic and empirical networks, as well as on data containing only functional information.

View Article and Find Full Text PDF

Dynamic networks exhibit temporal patterns that vary across different time scales, all of which can potentially affect processes that take place on the network. However, most data-driven approaches used to model time-varying networks attempt to capture only a single characteristic time scale in isolation - typically associated with the short-time memory of a Markov chain or with long-time abrupt changes caused by external or systemic events. Here we propose a unified approach to model both aspects simultaneously, detecting short and long-time behaviors of temporal networks.

View Article and Find Full Text PDF

One of the main computational and scientific challenges in the modern age is to extract useful information from unstructured texts. Topic models are one popular machine-learning approach that infers the latent topical structure of a collection of documents. Despite their success-particularly of the most widely used variant called latent Dirichlet allocation (LDA)-and numerous applications in sociology, history, and linguistics, topic models are known to suffer from severe conceptual and practical problems, for example, a lack of justification for the Bayesian priors, discrepancies with statistical properties of real texts, and the inability to properly choose the number of topics.

View Article and Find Full Text PDF

A principled approach to understand network structures is to formulate generative models. Given a collection of models, however, an outstanding key task is to determine which one provides a more accurate description of the network at hand, discounting statistical fluctuations. This problem can be approached using two principled criteria that at first may seem equivalent: selecting the most plausible model in terms of its posterior probability; or selecting the model with the highest predictive performance in terms of identifying missing links.

View Article and Find Full Text PDF

We present a Bayesian formulation of weighted stochastic block models that can be used to infer the large-scale modular structure of weighted networks, including their hierarchical organization. Our method is nonparametric, and thus does not require the prior knowledge of the number of groups or other dimensions of the model, which are instead inferred from data. We give a comprehensive treatment of different kinds of edge weights (i.

View Article and Find Full Text PDF

In evolving complex systems such as air traffic and social organisations, collective effects emerge from their many components' dynamic interactions. While the dynamic interactions can be represented by temporal networks with nodes and links that change over time, they remain highly complex. It is therefore often necessary to use methods that extract the temporal networks' large-scale dynamic community structure.

View Article and Find Full Text PDF

A principled approach to characterize the hidden structure of networks is to formulate generative models and then infer their parameters from data. When the desired structure is composed of modules or "communities," a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method to infer the modular structure of empirical networks, including the number of modules and their hierarchical organization.

View Article and Find Full Text PDF

The statistical significance of network properties is conditioned on null models which satisfy specified properties but that are otherwise random. Exponential random graph models are a principled theoretical framework to generate such constrained ensembles, but which often fail in practice, either due to model inconsistency or due to the impossibility to sample networks from them. These problems affect the important case of networks with prescribed clustering coefficient or number of small connected subgraphs (motifs).

View Article and Find Full Text PDF

Many network systems are composed of interdependent but distinct types of interactions, which cannot be fully understood in isolation. These different types of interactions are often represented as layers, attributes on the edges, or as a time dependence of the network structure. Although they are crucial for a more comprehensive scientific understanding, these representations offer substantial challenges.

View Article and Find Full Text PDF

A substantial volume of research is devoted to studies of community structure in networks, but communities are not the only possible form of large-scale network structure. Here, we describe a broad extension of community structure that encompasses traditional communities but includes a wide range of generalized structural patterns as well. We describe a principled method for detecting this generalized structure in empirical network data and demonstrate with real-world examples how it can be used to learn new things about the shape and meaning of networks.

View Article and Find Full Text PDF

We investigate the trade-off between the robustness against random and targeted removal of nodes from a network. To this end we utilize the stochastic block model to study ensembles of infinitely large networks with arbitrary large-scale structures. We present results from numerical two-objective optimization simulations for networks with various fixed mean degree and number of blocks.

View Article and Find Full Text PDF

We present an efficient algorithm for the inference of stochastic block models in large networks. The algorithm can be used as an optimized Markov chain Monte Carlo (MCMC) method, with a fast mixing time and a much reduced susceptibility to getting trapped in metastable states, or as a greedy agglomerative heuristic, with an almost linear O(Nln2N) complexity, where N is the number of nodes in the network, independent of the number of blocks being inferred. We show that the heuristic is capable of delivering results which are indistinguishable from the more exact and numerically expensive MCMC method in many artificial and empirical networks, despite being much faster.

View Article and Find Full Text PDF

We introduce a model for the adaptive evolution of a network of company ownerships. In a recent work it has been shown that the empirical global network of corporate control is marked by a central, tightly connected "core" made of a small number of large companies which control a significant part of the global economy. Here we show how a simple, adaptive "rich get richer" dynamics can account for this characteristic, which incorporates the increased buying power of more influential companies, and in turn results in even higher control.

View Article and Find Full Text PDF

A large variety of dynamical processes that take place on networks can be expressed in terms of the spectral properties of some linear operator which reflects how the dynamical rules depend on the network topology. Often, such spectral features are theoretically obtained by considering only local node properties, such as degree distributions. Many networks, however, possess large-scale modular structures that can drastically influence their spectral characteristics and which are neglected in such simplified descriptions.

View Article and Find Full Text PDF

We investigate the detectability of modules in large networks when the number of modules is not known in advance. We employ the minimum description length principle which seeks to minimize the total amount of information required to describe the network, and avoid overfitting. According to this criterion, we obtain general bounds on the detectability of any prescribed block structure, given the number of nodes and edges in the sampled network.

View Article and Find Full Text PDF

We model the robustness against random failure or an intentional attack of networks with an arbitrary large-scale structure. We construct a block-based model which incorporates--in a general fashion--both connectivity and interdependence links, as well as arbitrary degree distributions and block correlations. By optimizing the percolation properties of this general class of networks, we identify a simple core-periphery structure as the topology most robust against random failure.

View Article and Find Full Text PDF
Entropy of stochastic blockmodel ensembles.

Phys Rev E Stat Nonlin Soft Matter Phys

May 2012

Stochastic blockmodels are generative network models where the vertices are separated into discrete groups, and the probability of an edge existing between two vertices is determined solely by their group membership. In this paper, we derive expressions for the entropy of stochastic blockmodel ensembles. We consider several ensemble variants, including the traditional model as well as the newly introduced degree-corrected version [Karrer et al.

View Article and Find Full Text PDF