Green hydrogen, generated through the electrolysis of water, is a viable alternative to fossil fuels, although its adoption is hindered by the high costs associated with the catalysts. Among a wide variety of potential materials, binary nickel-palladium (NiPd) systems have garnered significant attention, particularly at the nanoscale, for their efficacious roles in catalyzing hydrogen and oxygen evolution reactions. However, our atom-level understanding of the descriptors that drive their energetic stability at the nanoscale remains largely incomplete.
View Article and Find Full Text PDFThe development of packaging films made from renewable raw materials, which cause low environmental impact, has gained attention due to their attractive properties, which have become an exciting option for synthetic films. In this study, cellulose micro/nanofibrils (MFC/NFC) films were produced with forest residues from the Amazon region and evaluated for their potential to generate alternative packaging to traditional plastic packaging. The MFC/NFC were obtained by mechanical fibrillation from fibers of açaí seeds (), titica vine (), and commercial pulps of sp.
View Article and Find Full Text PDFDiverse drugs have been used for the management of inflammation disorders and pain. However, they present many side effects and stimulate the search for new pharmacotherapeutic alternatives. Plant-derived products such as copaiba essential oil (CO) offer beneficial pharmacological effects.
View Article and Find Full Text PDFInt J Pharm
February 2023
Infections have emerged as a novel target in managing skin and mucosa diseases. Bacterial resistance to antimicrobials and biofilm elimination from surfaces remains a challenge. Because polymeric nanocapsules (NC) can increase antimicrobial activity, this study aimed to produce and characterize NC into chitosan films (CSF).
View Article and Find Full Text PDFZnO nanocrystals with three different morphologies have been synthesized via a simple sol-gel-based method using (bitter Amapá) and (sweet Amapá) latex as chelating agents. X-ray diffraction (XRD) and electron diffraction patterns (SAED) patterns showed the ZnO nanocrystals were a pure hexagonal wurtzite phase of ZnO. XRD-based spherical harmonics predictions and HRTEM images depicted that the nanocrystallites constitute pitanga-like (~15.
View Article and Find Full Text PDFThe applicability of cellulose nanofibrils (CNFs) has received attention due to their attractive properties. This study proposes the functionalization of açai CNFs with copaiba oil and vegetal tannins to produce films with potential for packaging. Bio-based films were evaluated by vapor permeability, colorimetry, and mechanical strength.
View Article and Find Full Text PDFThe objective of this research was to perform screening of biosurfactant-producing bacteria from Amapaense Amazon soils. Floodplain- and upland-forest soils of three municipalities of the Amapá state were isolated and identified. The isolates were cultured in nutrient broth with olive oil, and their extracts were evaluated according to drop collapse, oil dispersion, emulsification, and surface tension tests.
View Article and Find Full Text PDFThe potential of doped aluminium clusters as catalysts for the water splitting reaction has attracted considerable scientific effort, however, the water-cluster interactions, which are a key step in the overall mechanism, are not fully understood. Here, we report an ab initio investigation of water adsorption on AlSi clusters at the MP2 level to elucidate the bonding and structural properties employing unary and binary 8- and 13-atom clusters, namely, Si, AlSi, AlSi, Al, Si, AlSi, AlSi, and Al, which were selected by their relevance and energetic stability. We found that HO binds via the O atom near to the on-top sites of the Si or Al atoms; in particular, there is a strong preference for the Al sites on the binary AlSi clusters, which is supported by the strong adsorption energy.
View Article and Find Full Text PDFThe açaí fruit depulping produces large amounts of long lignocellulosic fiber bundles that are disposed in the environment. Chemical pretreatments may improve açaí fibers favoring their usage in advanced materials. This work aimed to define optimal alkali reaction parameters to improve the properties of açaí fibers.
View Article and Find Full Text PDF