Aspergilli comprise a diversity of species that have been extensively studied due to their catabolic diversity, biotechnological and ecological value, and pathogenicity. An impressive level of structural and functional conservation has been shown for aspergilli, regardless of many (yet) cryptic genomic elements. We have hypothesized the existence of conserved genes responsive to stress in aspergilli.
View Article and Find Full Text PDFSaprophytic fungi are able to catabolize many plant-derived aromatics, including, for example, gallate. The catabolism of gallate in fungi is assumed to depend on the five main central pathways, i.e.
View Article and Find Full Text PDFIn fungi, salicylate catabolism was believed to proceed only through the catechol branch of the 3-oxoadipate pathway, as shown, e.g., in However, the observation of a transient accumulation of gentisate upon the cultivation of in salicylate medium questions this concept.
View Article and Find Full Text PDFThe diversity and abundance of aromatic compounds in nature is crucial for proper metabolism in all biological systems, and also impacts greatly the development of many industrial processes. Naturally, understanding their catabolism becomes fundamental for many scientific fields of research, from clinical and environmental to technological. The genetic basis of the central pathways for the catabolism of aromatic compounds in fungi, particularly of benzene derivatives, remains however poorly understood largely overlooking their significance.
View Article and Find Full Text PDFPentachlorophenol (PCP) is globally dispersed and contamination of soil with this biocide adversely affects its functional biodiversity, particularly of fungi - key colonizers. Their functional role as a community is poorly understood, although a few pathways have been already elucidated in pure cultures. This constitutes here our main challenge - elucidate how fungi influence the pollutant mitigation processes in forest soils.
View Article and Find Full Text PDFAspergilli play major roles in the natural turnover of elements, especially through the decomposition of plant litter, but the end catabolism of lignin aromatic hydrocarbons remains largely unresolved. The 3-oxoadipate pathway of their degradation combines the catechol and the protocatechuate branches, each using a set of specific genes. However, annotation for most of these genes is lacking or attributed to poorly- or un-characterised families.
View Article and Find Full Text PDFA collective view of the degradation of monochlorocatechols in fungi is yet to be attained, though these compounds are recognised as key degradation intermediates of numerous chlorinated aromatic hydrocarbons, including monochlorophenols. In the present contribution we have analysed the degradation pathways of monochlorophenols in Aspergillus nidulans using essentially metabolomics. Degradation intermediates herein identified included those commonly reported (e.
View Article and Find Full Text PDFBbiCPL1 was the first papain-like cysteine protease from a piroplasm to be identified with proteolytic activity. Here we report the improved production of the active recombinant enzyme, and the biochemical characterization of this potential drug target. BbiCPL1 showed characteristic properties of its class, including hydrolysis of papain-family peptide substrates, an acidic pH optimum, requirement of a reducing environment for maximum activity, and inhibition by standard cysteine protease inhibitors such as E-64, leupeptin, ALLN and cystatin.
View Article and Find Full Text PDFBesnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins.
View Article and Find Full Text PDFPapain-like cysteine proteases have been shown to have essential roles in parasitic protozoa and are under study as promising drug targets. Five genes were identified by sequence similarity search to be homologous to the cysteine protease family in the ongoing Babesia bigemina genome sequencing project database and were compared with the annotated genes from the complete bovine piroplasm genomes of Babesia bovis, Theileria annulata, and Theileria parva. Multiple genome alignments and sequence analysis were used to evaluate the molecular evolution events that occurred in the C1 family of cysteine proteases in these piroplasms of veterinary importance.
View Article and Find Full Text PDFMolecular detection of Babesia species in apparently healthy cattle within an endemic region was carried out in order to determine the prevalence of carriers and the geographical distribution of Babesia bigemina and Babesia bovis in Maputo Province, Mozambique. Samples from 477 animals at 5 localities were analysed using 2 techniques, the semi-nested hot-start PCR and the reverse line blot (RLB) assay. With the semi-nested hot-start PCR, detection of B.
View Article and Find Full Text PDFMalaria remains one of the major human parasitic diseases, particularly in subtropical regions. Most of the fatal cases are caused by Plasmodium falciparum. The rodent parasite Plasmodium chabaudi has been the model of choice in research due to its similarities to human malaria, including developmental cycle, preferential invasion of mature erythrocytes, synchrony of asexual development, antigenic variation, gene sinteny as well as similar resistance mechanisms.
View Article and Find Full Text PDFPlasmodium cysteine proteases have been shown to be immunogenic and are being used as malaria potential serodiagnostic markers and vaccine targets. Genes encoding two Plasmodium chabaudi cysteine proteases chabaupain-1 (CP-1) and chabaupain-2 (CP-2) were identified and further expressed in Escherichia coli. Solubilisation of recombinant CP-1 and CP-2 was achieved by decreasing the temperature of induction.
View Article and Find Full Text PDFBabesiosis is a tick borne disease (TBD) caused by parasites of the genus Babesia, with considerable worldwide economic, medical, and veterinary impact. Bovine babesiosis and other TBDs were considered responsible for 50% of the deaths of cattle that occurred in Mozambique in the first year after importation from neighbouring countries. Here, we present the detection of Babesia bigemina and Babesia bovis in cattle from Mozambique using two distinct PCR methods.
View Article and Find Full Text PDFThe rodent malaria parasite Plasmodium chabaudi encodes one food vacuole plasmepsin-the aspartic proteinases important in haemoglobin degradation. A recombinant form of this enzyme was found to cleave a variety of peptide substrates and was susceptible to a selection of naturally occurring and synthetic inhibitors, displaying an inhibition profile distinct from that of aspartic proteinases from other malaria parasites. In addition, inhibitors of HIV proteinase that kill P.
View Article and Find Full Text PDFIntraerythrocytic malaria parasites degrade haemoglobin to provide nutrients for their own growth and maturation. Plasmodium aspartic proteases known as plasmepsins play an important role on haemoglobin degradation and are being studied as drug targets for chemotherapy of malaria. The rodent model for human malaria, Plasmodium chabaudi, is an experimentally good model for therapy drug design.
View Article and Find Full Text PDF