Publications by authors named "Tiago M Duarte"

Chinese hamster ovary (CHO) cells are the predominant host for production of therapeutic glycoproteins. In particular, the glutamine-synthetase (GS) expression system has been widely used in the biopharmaceutical industry for efficient selection of high-yielding clones. However, much remains unclear on how metabolic wiring affects culture performance.

View Article and Find Full Text PDF

(1)H-Nuclear magnetic resonance ((1)H-NMR) spectroscopy is a powerful technique to analyze the composition of complex mixtures based on the particular proton fingerprint of each molecule. Here we describe a protocol for exometabolome analysis of mammalian cells using this technique, including sample preparation, spectra acquisition, and integration. The potential of this technique is exemplified by application to cultures of a Chinese hamster ovary (CHO) cell line.

View Article and Find Full Text PDF

In biotechnological screening and production, oxygen supply is a crucial parameter. Even though oxygen transfer is well documented for viscous cultivations in stirred tanks, little is known about the gas/liquid oxygen transfer in shake flask cultures that become increasingly viscous during cultivation. Especially the oxygen transfer into the liquid film, adhering on the shake flask wall, has not yet been described for such cultivations.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cells are preferred hosts for the production of recombinant biopharmaceuticals. Efforts to optimize these bioprocesses have largely relied on empirical experience and our knowledge of cellular behavior in culture is incomplete. More recently, comprehensive investigations of metabolic network operation have started to be used to uncover traits associated with optimal growth and recombinant protein production.

View Article and Find Full Text PDF

In this work, synchronous fluorescence spectroscopy (SFS) is evaluated as a new tool for real-time bioprocess monitoring of animal cell cultures. This technique presents several advantages over the traditional two-dimensional (2D) fluorometry since it provides data on various fluorescent compounds in a single spectrum, showing improved peak resolution and recording speed. Bioreactor cultures of three monoclonal antibody-producing CHO cell lines were followed in situ by both 2D and synchronous fluorometry techniques.

View Article and Find Full Text PDF

We report a new method which combines fluorescence spectroscopy at microtiter plate scale with multivariate statistical analysis for rapid and high-throughput analysis of secreted recombinant protein and viable cell growth in animal cell cultures. The potential of the method is demonstrated by application to cultures of three Chinese Hamster Ovary (CHO) cell clones with distinct IgG(4) antibody yields. Supernatant samples collected throughout culture time were analysed by two-dimensional fluorometry; significant changes were observed in the regions of tryptophan, metabolic cofactors and vitamins.

View Article and Find Full Text PDF