Publications by authors named "Tiago Leao"

Bamboo plants are widely used in Asian traditional medicine for various health issues and exhibit therapeutic potential. species are renowned bamboos for their high phenolic compound content, including flavonoids and hydroxycinnamic acid derivatives, and possess noteworthy biological properties. Despite this, there is a notable scarcity of research on the chemical and biological aspects of Latin American bamboo leaf extracts (BLEs), especially concerning the genus.

View Article and Find Full Text PDF

Extreme environments, such as Antarctica, select microbial communities that display a range of evolutionary strategies to survive and thrive under harsh environmental conditions. These include a diversity of specialized metabolites, which have the potential to be a source for new natural product discovery. Efforts using (meta)genome mining approaches to identify and understand biosynthetic gene clusters in Antarctica are still scarce, and the extent of their diversity and distribution patterns in the environment have yet to be discovered.

View Article and Find Full Text PDF

Since the discovery of penicillin, microbial metabolites have been extensively investigated for drug discovery purposes. In the last decades, microbial derived compounds have gained increasing attention in different fields from pharmacognosy to industry and agriculture. Microbial metabolites in microbiomes present specific functions and can be associated with the maintenance of the natural ecosystems.

View Article and Find Full Text PDF

Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature.

View Article and Find Full Text PDF

Bamboo species have traditionally been used as building material and potential source of bioactive substances, as they produce a wide variety of phenolic compounds, including flavonoids and cinnamic acid derivatives that are considered biologically active. However, the effects of growth conditions such as location, altitude, climate, and soil on the metabolome of these species still need to be fully understood. This study aimed to evaluate variations in chemical composition induced by altitudinal gradient (0-3000 m) by utilizing an untargeted metabolomics approach and mapping chemical space using molecular networking analysis.

View Article and Find Full Text PDF

Microbial specialized metabolites are an important source of and inspiration for many pharmaceuticals, biotechnological products and play key roles in ecological processes. Untargeted metabolomics using liquid chromatography coupled with tandem mass spectrometry is an efficient technique to access metabolites from fractions and even environmental crude extracts. Nevertheless, metabolomics is limited in predicting structures or bioactivities for cryptic metabolites.

View Article and Find Full Text PDF

Background And Purpose: Progression rate is quite variable in amyotrophic lateral sclerosis (ALS); thus, tools for profiling disease progression are essential for timely interventions. The objective was to apply dynamic Bayesian networks (DBNs) to establish the influence of clinical and demographic variables on disease progression rate.

Methods: In all, 664 ALS patients from our database were included stratified into slow (SP), average (AP) and fast (FP) progressors, according to the Amyotrophic Lateral Sclerosis Functional Rating Scale Revised (ALSFRS-R) rate of decay.

View Article and Find Full Text PDF

In following up on observed anti-inflammatory activity of the organic extract of the marine sponge-derived fungus MCCF102, two new dipyrrolobenzoquinones, terreusinone B and C (1: and 2: ), were discovered along with the known analogue, terreusinone (3: ). The structures of 1: -3: were determined by spectroscopic and spectrometric analyses, along with chemical inter-conversion. testing on lipopolysaccharide (LPS) stimulated RAW 264.

View Article and Find Full Text PDF

Three new compounds, portobelamides A and B ( and ), 3-amino-2-methyl-7-octynoic acid (AMOYA) and hydroxyisovaleric acid (Hiva) containing cyclic depsipeptides, and one long chain lipopeptide caciqueamide (), were isolated from a field-collection of a sp. marine cyanobacterium obtained from Panama as part of the Panama International Cooperative Biodiversity Group Program. Their planar structures were elucidated through analysis of 2D NMR and MS data, especially high resolution (HR) MS/MS fragmentation methods.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease causing patients to quickly lose motor neurons. The disease is characterized by a fast functional impairment and ventilatory decline, leading most patients to die from respiratory failure. To estimate when patients should get ventilatory support, it is helpful to adequately profile the disease progression.

View Article and Find Full Text PDF

Genomics and metabolomics are widely used to explore specialized metabolite diversity. The Paired Omics Data Platform is a community initiative to systematically document links between metabolome and (meta)genome data, aiding identification of natural product biosynthetic origins and metabolite structures.

View Article and Find Full Text PDF

Microbial natural products are important for the understanding of microbial interactions, chemical defense and communication, and have also served as an inspirational source for numerous pharmaceutical drugs. Tropical marine cyanobacteria have been highlighted as a great source of new natural products, however, few reports have appeared wherein a multi-omics approach has been used to study their natural products potential (i.e.

View Article and Find Full Text PDF

Filamentous marine cyanobacteria make a variety of bioactive molecules that are produced by polyketide synthases, nonribosomal peptide synthetases, and hybrid pathways that are encoded by large biosynthetic gene clusters. These cyanobacterial natural products represent potential drug leads; however, thorough pharmacological investigations have been impeded by the limited quantity of compound that is typically available from the native organisms. Additionally, investigations of the biosynthetic gene clusters and enzymatic pathways have been difficult due to the inability to conduct genetic manipulations in the native producers.

View Article and Find Full Text PDF

This report describes the first application of the novel NMR-based machine learning tool "Small Molecule Accurate Recognition Technology" (SMART 2.0) for mixture analysis and subsequent accelerated discovery and characterization of new natural products. The concept was applied to the extract of a filamentous marine cyanobacterium known to be a prolific producer of cytotoxic natural products.

View Article and Find Full Text PDF

A thiazole-containing cyclic depsipeptide with 11 amino acid residues, named pagoamide A (), was isolated from laboratory cultures of a marine Chlorophyte, sp. This green algal sample was collected from America Samoa, and pagoamide A was isolated using guidance by MS/MS-based molecular networking. Cultures were grown in a light- and temperature-controlled environment and harvested after several months of growth.

View Article and Find Full Text PDF
Article Synopsis
  • Ribosomally synthesized and post-translationally modified peptides (RiPPs) are significant natural products that include antibiotics and various bioactive compounds.
  • Current discovery methods for RiPPs are limited and ineffective at identifying unknown modifications in larger datasets.
  • MetaMiner is a new software tool that successfully identified 31 known and 7 unknown RiPPs from diverse microbial sources by analyzing millions of spectra from large genomic databases.
View Article and Find Full Text PDF

Hybrid type I PKS/NRPS biosynthetic pathways typically proceed in a collinear manner wherein one molecular building block is enzymatically incorporated in a sequence that corresponds to gene arrangement. In this work, genome mining combined with the use of a fluorogenic azide-based click probe led to the discovery and characterization of vatiamides A-F, three structurally diverse alkynylated lipopeptides, and their brominated analogues, from the cyanobacterium Moorea producens ASI16Jul14-2. These derive from a unique combinatorial non-collinear PKS/NRPS system encoded by a 90 kb gene cluster in which an upstream PKS cassette interacts with three separate cognate NRPS partners.

View Article and Find Full Text PDF

Dozens of type A malyngamides, principally identified by a decorated six-membered cyclohexanone headgroup and methoxylated lyngbic acid tail, have been isolated over several decades. Their environmental sources include macro- and microbiotic organisms, including sea hares, red alga, and cyanobacterial assemblages, but the true producing organism has remained enigmatic. Many type A analogues display potent bioactivity in human-health related assays, spurring an interest in this molecular class and its biosynthetic pathway.

View Article and Find Full Text PDF

Decreasing sequencing costs has sparked widespread investigation of the use of microbial genomics to accelerate the discovery and development of natural products for therapeutic uses. Tropical marine filamentous cyanobacteria have historically produced many structurally novel natural products, and therefore present an excellent opportunity for the systematic discovery of new metabolites via the information derived from genomics and molecular genetics. Adequate knowledge transfer and institutional know-how are important to maintain the capability for studying filamentous cyanobacteria due to their unusual microbial morphology and characteristics.

View Article and Find Full Text PDF

Genome sequencing of microorganisms has revealed a greatly increased capacity for natural products biosynthesis than was previously recognized from compound isolation efforts alone. Hence, new methods are needed for the discovery and description of this hidden secondary metabolite potential. Here we show that provision of heavy nitrogen N-nitrate to marine cyanobacterial cultures followed by single-filament MALDI analysis over a period of days was highly effective in identifying a new natural product with an exceptionally high nitrogen content.

View Article and Find Full Text PDF

Cyanobacteria are major sources of oxygen, nitrogen, and carbon in nature. In addition to the importance of their primary metabolism, some cyanobacteria are prolific producers of unique and bioactive secondary metabolites. Chemical investigations of the cyanobacterial genus have resulted in the isolation of over 190 compounds in the last two decades.

View Article and Find Full Text PDF

Background: Filamentous tropical marine cyanobacteria such as Moorea producens strain JHB possess a rich community of heterotrophic bacteria on their polysaccharide sheaths; however, these bacterial communities have not yet been adequately studied or characterized.

Results And Discussion: Through efforts to sequence the genome of this cyanobacterial strain, the 5.99 MB genome of an unknown bacterium emerged from the metagenomic information, named here as Mor1.

View Article and Find Full Text PDF

We announce here the draft genome sequence ofNostoc piscinaleCENA21, a diazotrophic heterocyst-forming cyanobacterium isolated from the Solimões River, Amazon Basin, Brazil. It consists of one circular chromosome scaffold with 11 contigs and total size of 7,094,556 bp. Secondary metabolite annotations indicate a good source for the discovery of novel natural products.

View Article and Find Full Text PDF

Filamentous marine cyanobacteria produce bioactive natural products with both potential therapeutic value and capacity to be harmful to human health. Genome sequencing has revealed that cyanobacteria have the capacity to produce many more secondary metabolites than have been characterized. The biosynthetic pathways that encode cyanobacterial natural products are mostly uncharacterized, and lack of cyanobacterial genetic tools has largely prevented their heterologous expression.

View Article and Find Full Text PDF