Publications by authors named "Tiago Krug"

Subarachnoid hemorrhage (SAH) is a life-threatening event that most frequently leads to severe disability and death. Its most frequent cause is the rupture of a saccular intracranial aneurysm (IA), which is a blood vessel dilation caused by disease or weakening of the vessel wall. Although the genetic contribution to IA is well established, to date no single gene has been unequivocally identified as responsible for IA formation or rupture.

View Article and Find Full Text PDF

Behçet's disease (BD) is a complex disease with genetic and environmental risk factors implicated in its etiology; however, its pathophysiology is poorly understood. To decipher BD's genetic underpinnings, we combined gene expression profiling with pathway analysis and association studies. We compared the gene expression profiles in peripheral blood mononuclear cells (PBMCs) of 15 patients and 14 matched controls using Affymetrix microarrays and found that the neuregulin signaling pathway was over-represented among the differentially expressed genes.

View Article and Find Full Text PDF

We hereby propose a novel approach to the identification of ischemic stroke (IS) susceptibility genes that involves converging data from several unbiased genetic and genomic tools. We tested the association between IS and genes differentially expressed between cases and controls, then determined which data mapped to previously reported linkage peaks and were nominally associated with stroke in published genome-wide association studies. We first performed gene expression profiling in peripheral blood mononuclear cells of 20 IS cases and 20 controls.

View Article and Find Full Text PDF

Objective: Animal studies have allowed important insights into the role of the nitric oxide synthase (NOS) enzymes in atherosclerosis and hypertension, as well as in stroke. In this study we tested the hypothesis that the NOS1 and NOS3 genes, respectively encoding neuronal NOS (nNOS) and endothelial NOS (eNOS), influence stroke susceptibility and outcome after a stroke event.

Methods: We conducted a case-control association study in 551 ischemic stroke patients and 530 controls to assess the role of NOS1 and NOS3 variants in stroke susceptibility.

View Article and Find Full Text PDF

There is substantial evidence that inflammation within the central nervous system contributes to stroke risk and recovery. Inflammatory conditions increase stroke risk, and the inflammatory response is of major importance in recovery and healing processes after stroke. We investigated the role of inflammatory genes IL1B, IL6, MPO, and TNF in stroke susceptibility and recovery in a population sample of 672 patients and 530 controls, adjusting for demographic, clinical and lifestyle risk factors, and stroke severity parameters.

View Article and Find Full Text PDF

Background: Variants in the 5-lipoxygenase-activating protein (ALOX5AP) and phosphodiesterase 4D (PDE4D) genes have first been associated with ischemic stroke (IS) through whole-genome linkage screens. However, association studies obtained conflicting results. We aimed to investigate the contribution of selected single nucleotide polymorphisms (SNPs) in these genes for the first time in a large Iberian population.

View Article and Find Full Text PDF

Background: Multiple lines of evidence suggest that genetic factors contribute to stroke recovery. The matrix metalloproteinases -2 (MMP-2) and -9 (MMP-9) are modulators of extracellular matrix components, with important regulatory functions in the Central Nervous System (CNS). Shortly after stroke, MMP-2 and MMP-9 have mainly damaging effects for brain tissue.

View Article and Find Full Text PDF

Cerebrovascular and cardiovascular diseases are the leading causes of death and disability worldwide. They are complex disorders resulting from the interplay of genetic and environmental factors, and may share several susceptibility genes. Several recent studies have implicated variants of the Kalirin (KALRN) gene with susceptibility to cardiovascular and metabolic phenotypes, but no studies have yet been performed in stroke patients.

View Article and Find Full Text PDF

Background: The genetic contribution to stroke is well established but it has proven difficult to identify the genes and the disease-associated alleles mediating this effect, possibly because only nuclear genes have been intensely investigated so far. Mitochondrial DNA (mtDNA) has been implicated in several disorders having stroke as one of its clinical manifestations. The aim of this case-control study was to assess the contribution of mtDNA polymorphisms and haplogroups to ischemic stroke risk.

View Article and Find Full Text PDF