Publications by authors named "Tiago Facci"

We propose novel pseudocapacitors that can store energy related to the partial entropy change associated with proton concentration variations following neutralization reactions. In this situation, it is possible to obtain electrochemical energy after the complete charge/discharge cycle conducted in electrolytic solutions with different proton concentrations. To this end, we prepared modified electrodes from phosphomolybdic acid (PMA), poly(3,4-ethylenedioxythiophene/poly(styrenesulfonate) (PEDOT-PSS), and polyallylamine (PAH) by the layer-by-layer (LbL) method and investigated their electrochemical behavior, aiming to use them in these neutralization pseudocapacitors.

View Article and Find Full Text PDF

Layer-by-layer (LbL) nanocomposite films from TiO(2) nanoparticles and tungsten-based oxides (WO(x)H(y)), as well as dip-coating films of TiO(2) nanoparticles, were prepared and investigated by electrochemical techniques under visible light beams, aiming to evaluate the lithium ion storage and chromogenic properties. Atomic force microscopy (AFM) images were obtained for morphological characterization of the surface of the materials, which have similar roughness. Cyclic voltammetry and chronoamperometry measurements indicated high storage capacity of lithium ions in the LbL nanocomposite compared with the dip-coating film, which was attributed to the faster lithium ion diffusion rate within the self-assembled matrix.

View Article and Find Full Text PDF

One major challenge for the widespread application of direct methanol fuel cells (DMFCs) is to decrease the amount of platinum used in the electrodes, which has motivated a search for novel electrodes containing platinum nanoparticles. In this study, platinum nanoparticles were electrodeposited on layer-by-layer (LbL) films from TiO2 and poly(vinyl sulfonic) (PVS), by immersing the films into a H2PtCl6 solution and applying a 100 microA current during different electrodeposition times. Scanning tunnel microscopy (STM) and atomic force microscopy (AFM) images showed increased platinum particle size and electrode roughness for increasing electrodeposition times.

View Article and Find Full Text PDF