Sand flies are vectors of great public health importance, since they constitute a group of hematophagous insects responsible for etiological agents transmission of zoonotic diseases such a visceral leishmaniasis. In face of the expansion of these diseases, efficient control strategies are needed which depend on comprehending the sand fly eco-epidemiology. In this regard, MALDI-TOF mass spectrometry has been used for bacteria, fungi and yeast detection studies through peptide/protein profiles.
View Article and Find Full Text PDFTuberculosis (TB) is one of the leading causes of death worldwide, and Diabetes Mellitus is one of the major comorbidities (TB/DM) associated with the disease. A total of 103 differentially expressed ncRNAs have been identified in the TB and TB/DM comparisons. A machine learning algorithm was employed to identify the most informative lncRNAs: ADM-DT, LINC02009, LINC02471, SOX2-OT, and GK-AS1.
View Article and Find Full Text PDFSome tick species are competent to transmit more than one pathogen while other species are, until now, known to be competent to transmit only one single or any pathogen. Such a difference in vector competence for one or more pathogens might be related to the microbiome, and understanding what differentiates these two groups of ticks could help us control several diseases aiming at the bacteria groups that contribute to such a broad vector competence. Using 16S rRNA from tick species that could be classified into these groups, genera such as Rickettsia and Staphylococcus seemed to be associated with such a broad vector competence.
View Article and Find Full Text PDFIn the Americas, Lutzomyia longipalpis is the most relevant sand fly species for the transmission of visceral leishmaniasis. For its vector control in Brazil, insecticide spraying has not shown persistent reduction in disease prevalence while some sand fly populations are reported resistant to the insecticides used in spraying. The usage of repellents and personal protection behavior can reduce vector borne diseases prevalence.
View Article and Find Full Text PDFThe study aimed to develop a multiplex qPCR to detect Leishmania infantum load in different sandfly sample settings using Leishmania kDNA and sandfly vacuolar ATPase (VATP) subunit C as internal control gene. The amplification of Lutzomyia longipalpis VATP gene was evaluated together with Leishmania infantum kDNA in a multiplex reaction. The concentration of VATP gene oligonucleotides was adjusted until no statistically significant difference was observed between all multiplex standard curves and singleplex curves, that is, only kDNA amplification.
View Article and Find Full Text PDFChem Biodivers
September 2021
Most of the hematophagous insects act as disease vectors, including Aedes aegypti, responsible for transmitting some of the most critical arboviruses globally, such as Dengue. The use of repellents based on natural products is a promising alternative for personal protection compared to industrial chemical repellents. In this study, the repellent effect of essential oils extracted from Lippia thymoides, Lippia alba, Cymbopogon winterianus, and Eucalyptus globulus leaves was evaluated.
View Article and Find Full Text PDFBackground: Reports have shown correlations between the immune response to vector saliva and Leishmaniasis outcome. We followed dogs in an endemic area for two years characterizing resistance or susceptibility to canine visceral leishmaniasis (CVL) according to Leishmania infantum diagnosis and clinical development criteria. Then, we aimed to identify a biosignature based on parasite load, serum biological mediators' interactions, and vector exposure intensity associated with CVL resistance and susceptibility.
View Article and Find Full Text PDFSand flies are the insects responsible for transmitting Leishmania parasites, the causative agents of leishmaniasis in humans. However, the effects of sand fly breeding sites on their biology and ecology remain poorly understood. Herein, we studied how larval nutrition associated with putative breeding sites of the sand fly Lutzomyia longipalpis affects their oviposition, development, microbiome, and susceptibility to Leishmania by rearing L.
View Article and Find Full Text PDFObjective: Vaccination coverage is decreasing worldwide, favoring the potential reemergence of vaccine-preventable diseases. In this study, we performed a longitudinal characterization of vaccination coverage in Brazil and compared the profiles between the distinct regions in the country to test whether there has been a substantial change over the last 5 years.
Methods: De-identified publicly available data were retrieved from the repository of the Brazilian Ministry of Health, comprising detailed information on vaccination coverage in all age groups between 1994 and 2019.
PLoS Negl Trop Dis
August 2019
Visceral leishmaniasis (VL) is a zoonosis caused by the protozoan Leishmania infantum and in Brazil is transmitted mainly by the bite of Lutzomuyia longipalpis sand flies. Data about the presence, distribution, natural infection rate, seasonal and monthly dynamics of the vector population are important for optimizing the measures to control VL in endemic areas. This study aimed to identify sand fly fauna in an endemic area for VL to detect the prevalence of L.
View Article and Find Full Text PDFBlood-sucking phlebotomine sand flies (Diptera: Psychodidae) transmit leishmaniasis as well as arboviral diseases and bartonellosis. Sand fly females become infected with parasites and transmit them while imbibing vertebrates' blood, required as a source of protein for maturation of eggs. In addition, both females and males consume plant-derived sugar meals as a source of energy.
View Article and Find Full Text PDFOne of the main limitations for the effective control of canine leishmaniasis in endemic areas is the difficulty in identifying infectious dogs. The objective of this study was to determine factors, related to dogs and to parasite detection in sand flies, which are associated with the positive xenodiagnosis of Leishmania infantum using the vector Lutzomyia longipalpis. The xenodiagnosis was performed in 50 owned dogs residing in endemic areas, which were divided into three different groups: G1-26 dogs proved to be infected and classified by severity of VL clinical signs on physical examination; G2-15 dogs proved to be infected and classified by severity of clinical signs and intensity of laboratory abnormalities; G3-nine dogs that were seropositive for anti-Leishmania IgG in ELISA tests.
View Article and Find Full Text PDF