The intestinal immune system must concomitantly tolerate food and commensals and protect against pathogens. Antigen-presenting cells (APCs) orchestrate these immune responses by presenting luminal antigens to CD4 T cells and inducing their differentiation into regulatory (peripheral regulatory T cell) or inflammatory [T helper (Th) cell] subsets. We used a proximity labeling method (LIPSTIC) to identify APCs that presented dietary antigens under tolerizing and inflammatory conditions and to understand cellular mechanisms by which tolerance to food is induced and can be disrupted by infection.
View Article and Find Full Text PDFThe protozoan () is a well-adapted parasite to mammalian hosts and the pathogen of Chagas disease in humans. As both host and are highly genetically diverse, many variables come into play during infection, making disease outcomes difficult to predict. One important challenge in the field of Chagas disease research is determining the main factors leading to parasite establishment in the chronic stage in some organs, mainly the heart and/or digestive system.
View Article and Find Full Text PDFThe intestinal immune system has the challenging task of tolerating foreign nutrients and the commensal microbiome, while excluding or eliminating ingested pathogens. Failure of this balance leads to conditions such as inflammatory bowel diseases, food allergies and invasive gastrointestinal infections. Multiple immune mechanisms are therefore in place to maintain tissue integrity, including balanced generation of effector T (T) cells and FOXP3 regulatory T (pT) cells, which mediate resistance to pathogens and regulate excessive immune activation, respectively.
View Article and Find Full Text PDF